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Abstract: In the study of Partial Differential Equations and in Harmonic Analysis, an important role is played by the 

so-called pseudodifferential operators. For instance, for equations that describe electric potential and steady-state heat 

flow (elliptic equations) one can construct explicit solutions using pseudodifferential operators. Roughly speaking, these 

operators act on functions (or signals) by filtering (attenuating or amplifying) specific frequencies of those. For 

equations that describe wave propagation (hyperbolic equations), a similar role is played by Fourier integral operators. 

These tools allow us to obtain a priori estimates for the solutions, and study their behaviour and properties. Therefore, 

being able to estimate these operators in different function spaces is important for measuring the size and regularity of 

the solutions of PDEs in those spaces. We consider two types of multilinear pseudodifferential operators. First, we prove 

the boundedness of multilinear pseudo differential operators with symbols which are only measurable in the spatial 

variables in weighted Lebesgue spaces. These results generalise earlier work of the present authors concerning linear 

pseudo-pseudodifferential operators. Secondly, we investigate the boundedness of bilinear pseudodifferential operators 

with symbols in the H¨ormander S m ρ,δ classes. These results are new in the case ρ < 1, that is, outwith the scope of 

multilinear Calder´on-Zygmund theory. 
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1 Introduction 

In mathematical analysis a pseudo-differential operator is an 

extension of the concept of differential operator. Pseudo-

differential operators are used extensively in the theory 

of partial differential equations and quantum field theory.  

Linear differential operators with constant coefficients 

Consider a linear differential operator with constant 

coefficients,  

 
 Which acts on smooth functions  

 
 With compact support in Rn. This operator can be written 

as a composition of a Fourier transform, a 

simple multiplication by the polynomial function (called 

the symbol) 

 

 
And an inverse Fourier transform, in the form: 

 
2. Proof. 

Case 1. 

 Suppose that the pair (𝑓, 𝑘) satisfy the 𝐶𝐿𝐶𝑆  property in 

𝑘(𝑋). Then according to 𝐶𝐿𝐶𝑆  property , there exists a 

sequence < 𝑥𝑛 > in  𝑋 such that lim
𝑛→∞

𝑓𝑥𝑛 = lim
𝑥→∞

𝑘𝑥𝑛 =

𝑡 ∈ 𝑘(𝑋) such that 𝑡 = 𝑘𝑣  for some 𝑣 ∈ 𝑋.  We claim that  

𝑔𝑣 = 𝑡. 
Putting 𝑥 = 𝑥𝑛 , 𝑦 = 𝑣  in (2.1), we get 

∫ 𝜙(𝑡)𝑑𝑡 
𝑑(𝑓𝑥𝑛,𝑔𝑣)

0

≤ 𝜓 ∫ 𝜙(𝑡)𝑑𝑡
𝑀(𝑥𝑛,𝑣)

0

 

𝑀(𝑥𝑛, 𝑣) = max {𝑑(𝑘𝑥𝑛 , ℎ𝑣), 𝑑(𝑘𝑥𝑛 , 𝑓𝑥𝑛), 𝑑(𝑔𝑣, ℎ𝑣),
1

2
[𝑑(𝑘𝑥𝑛 , 𝑔𝑣) + 𝑑(ℎ𝑣, 𝑓𝑥𝑛)]}  

lim
𝑛→∞

𝑑(𝑘𝑥𝑛 , ℎ𝑣) =  0

= lim
𝑛→∞

𝑑(𝑘𝑥𝑛 , 𝑓𝑥𝑛) = lim
𝑛→∞

𝑑(ℎ𝑣, 𝑓 𝑥𝑛) 

lim
𝑛→∞

𝑑(𝑓 𝑥𝑛 , 𝑔𝑣) = 𝑑(𝑡, 𝑔𝑣) = lim
𝑛→∞

𝑑(𝑘𝑥𝑛 , 𝑔𝑣)

= lim
𝑛→∞

𝑑(𝑔𝑣, ℎ𝑣) 

Taking limit  𝑛 → ∞  , we get 

𝑙𝑖𝑚 ∫ 𝜙(𝑡)𝑑𝑡 ≤ 𝜓(∫ 𝜙(𝑡)𝑑𝑡
𝑑(𝑡,𝑔𝑣)

0

𝑑(𝑓𝑥𝑛,𝑔𝑣)

0

 

<∫ 𝜙(𝑡)𝑑𝑡 
𝑑(𝑡,𝑔𝑣)

0
, a contradiction. 

∴ lim
𝑛→∞

𝑓𝑥𝑛 = lim
𝑛→∞

𝑘𝑥𝑛 = lim
𝑛→∞

𝑔𝑣 = lim
𝑛→∞

ℎ𝑣 = 𝑡 

Hence, v is a coincidence point of (f, k). Now, the weakly 

compatibility of pair (𝑓, 𝑘) implies that 𝑘𝑓𝑣 = 𝑓𝑘𝑣 = 𝑘𝑡 =
𝑓𝑡. We claim that 𝑡  is  a  common fixed point of (𝑓, 𝑘), that 

is ;𝑓𝑡 = 𝑘𝑡 = 𝑡.  
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For putting 𝑥 = 𝑥𝑛 , 𝑦 = 𝑡 in (2.1) and using lim
𝑛→∞

𝑓𝑥𝑛 = 𝑡 =

lim
𝑛→∞

𝑘𝑥𝑛 , 𝑘𝑡 = 𝑔𝑡, we have ∫ 𝜙(𝑡)𝑑𝑡 ≤
𝑑(𝑓𝑥𝑛,𝑔𝑡)

0

𝜓 (∫ 𝜙(𝑡)𝑑𝑡
𝑀(𝑥𝑛 ,𝑡)

0
) 

𝑀(𝑥𝑛, 𝑡)

= 𝑚𝑎𝑥 {𝑑(𝑘𝑥𝑛 , ℎ𝑡) , 𝑑(𝑘𝑥𝑛, 𝑓𝑥𝑛) , 𝑑(𝑔𝑡, ℎ𝑡) ,
1

2
[𝑑(𝑘𝑥𝑛 , 𝑔𝑡)

+ 𝑑(ℎ𝑡, 𝑓𝑥𝑛)]}. 

 

Taking limit as 𝑛 → ∞, we have 

 

lim
𝑛→∞

∫ 𝜙(𝑡)𝑑𝑡 ≤ lim
𝑛→∞

𝜓[∫ 𝜙(𝑡)𝑑𝑡]
𝑀(𝑥𝑛,𝑡)

0

𝑑(𝑓𝑥𝑛,𝑔𝑡)

0

 

 

lim
𝑛→∞

𝑑( 𝑓𝑥𝑛,𝑔𝑡) = lim
𝑛→∞

𝑑(𝑘𝑥𝑛 , 𝑔𝑡) = 𝑑(𝑡, 𝑔𝑡) = 𝑑(𝑔𝑡, ℎ𝑡) 

 

lim
𝑛→∞

𝑑( 𝑘𝑥𝑛 , ℎ𝑡) = lim
𝑛→∞

𝑑(𝑘𝑥𝑛 , 𝑓𝑥𝑛)

= lim
𝑛→∞

𝑑(ℎ𝑡, 𝑓𝑥𝑛) = 0 

 

∫ 𝜙(𝑡)𝑑𝑡 ≤ 𝜓 (∫ 𝜙(𝑡)𝑑𝑡
𝑑(𝑡,𝑔𝑡)

0

)
𝑑(𝑡,𝑔𝑡)

0

 

 

If 𝑑(𝑡, 𝑔𝑡) ≠ 0, then 𝑑(𝑡, 𝑔𝑡) > 0. 
 

∫ 𝜙(𝑡)𝑑𝑡 ≤ 𝜓 (∫ 𝜙(𝑡)𝑑𝑡
𝑑(𝑡,𝑔𝑡)

0

)
𝑑(𝑡,𝑔𝑡)

0

 

 

< ∫ 𝜙(𝑡)𝑑𝑡 ,
𝑑(𝑡,𝑔𝑡)

0
 a contradiction. 

 

∴ 𝑡 = 𝑔𝑡. 
Thus,  𝑔𝑡 = 𝑡. Here, in all cases, 𝑔𝑡 = ℎ𝑡 = 𝑡. 

It shows that 𝑡 ∈ 𝑘(𝑋) is a common fixed point of (𝑔, ℎ). 
 

Case 2. 

Next, suppose that second pair (𝑔, ℎ)  satisfy 𝐶𝐿𝐶𝑆  property 

in a subcase ℎ(𝑥).  Then according to 𝐶𝐿𝐶𝑆  property, ∃ a 

sequence {𝑦𝑛} in 𝑋 such that 

lim
𝑛→∞

𝑔𝑦𝑛 = lim
𝑛→∞

ℎ 𝑦𝑛 ∈ ℎ(𝑋). So, ∃  𝑡′ ∈ ℎ(𝑋)  such that  

𝑡′ = 𝑆𝑢  for some  𝑢 ∈ 𝑋;  where  𝑡′ =
lim

𝑛→∞
𝑔𝑦𝑛  = lim

𝑛→∞
ℎ𝑦𝑛. 

We claim that 𝑓𝑢 = 𝑡′follows exactly as in case 1. It shows 

that 𝑢 is coincidence point of  (𝑓, 𝑘). The weakly compatible 

of  (𝑓, 𝑘) implies that 𝑓𝑘𝑢 = 𝑘𝑓𝑢 = 𝑓𝑡′ = 𝑘𝑡′. It shows 

that  𝑡′ is a coincidence point of (𝑓, 𝑘) and 𝑡 ∈ ℎ(X). 

Now, we claim that 𝑡′ is a common fixed point of  (𝑓, 𝑘). 
This follows exactly as in Case 1, by putting 𝑥 = 𝑡′, 𝑦 = 𝑦𝑛 

in equation (2.1). 

Taking 𝑛 → ∞ and using 𝑓𝑡′ = 𝑘𝑡′. 
Hence, 𝑓𝑡′ = 𝑡′. 
It shows that 𝑡′ ∈ ℎ(𝑋) in common fixed point of (𝑓, 𝑘). 

Further, we claim that the common fixed point 𝑡′ of (𝑓, 𝑘) 

and 𝑡 of (𝑔, ℎ)  are same,that is  𝑡 = 𝑡′. If not, then putting 

𝑥 = 𝑡′, 𝑦 = 𝑡 in condition (2), and using 𝑓𝑡′ = 𝑘𝑡′ = 𝑡′ and 

𝑔𝑡 = ℎ𝑡 = 𝑡 ,we have 

∫ 𝜙(𝑡)𝑑𝑡 ≤ 𝜓(∫ 𝜙(𝑡)𝑑𝑡
𝑀(𝑡,𝑡′)

0

𝑑(𝑓𝑡′,𝑔𝑡)

0

 

M(𝑡′, 𝑡) = max{
𝑑(𝑘𝑡′, ℎ𝑡), 𝑑(𝑘𝑡′, 𝑓𝑡′), 𝑑(𝑔𝑡, ℎ𝑡),

1 2⁄ [𝑑(𝑘𝑡′, 𝑔𝑡) + 𝑑(ℎ𝑡, 𝑓𝑡′)]
} 

∫ 𝜙(𝑡)𝑑𝑡 ≤ 𝜓(∫ 𝜙(𝑡))𝑑𝑡
𝑑( 𝑡′ ,𝑡)

0

𝑑(𝑡′,𝑡)

0
) 

<∫ 𝜙(𝑡)𝑑𝑡
𝑑(𝑡′,𝑡)

0
, a contradiction. 

Hence, 𝑡 = 𝑡′. 

This shows that 𝑡 is a common fixed point of  𝑓, 𝑔, ℎ, 𝑘. 

Uniqueness of common fixed point follows easily. This 

completes the proof. 

 

3 Applications 

The study of multilinear pseudodifferential operators goes 

back to the pioneering works of R. Coifman and Y. Meyer, 

[6], [7], [8] and [9]. Since then, there has been a large 

amount of work on various generalisations of their results, 

as well as studies of bilinear operators with symbols 

satisfying different conditions to those in the standard 

bilinear Coifman-Meyer classes. The literature in this area 

of research is vast and any brief summary of it here would 

not do the authors justice. Therefore we confine ourselves to 

mention only those works with a direct connection to the 

present paper. R. Coifman and Y. Meyer, in [8] and [9], 

proved the boundedness from L p1 ×L p2 ×· · · ×L pN to L 

r of multilinear pseudodifferential operators with symbols in 

the class S 0 1,0 (n, N) (see Definition 5.3 below) for 1 < pi 

< ∞ and r > 1 with 1/p1 + 1/p2 + · · · + 1/pn = 1/r. In the 

seminal paper [11], L. Grafakos and R. Torres 

systematically developed the theory of multilinear 

Calder´onZygmund operators. They proved a multilinear 

T(1)-Theorem which they applied to generalise the result 

above to r > 1/N.  

As a further application, they demonstrated the boundedness 

in Lebesgue spaces of multilinear pseudodifferential 

operators which, together with each of the adjoint operators, 

belonged to OP S0 1,1 (n, N) (see Definition 2.2). However, 

in [5], A. B´enyi and R. Torres showed that there exist 

symbols in S 0 1,1 (n, 2) that do not give rise to bilinear 

operators which are bounded from L p1 × L p2 to L r for 1 

6 p1, p2, r < ∞ such that 1/p1 + 1/p2 = 1/r. In particular, 

there is no analogue of the Calder´on-Vaillancourt Theorem 

in the bilinear setting.  

Moreover, the class of operators OP S0 1,1 (n, 2) is not 

closed under transposition. In contrast, [4] demonstrates that 

OP S0 1,0 (n, 2) is closed under transposition. Recently, in 

[2], A. B´enyi, D. Maldonado, V. Naibo and R. Torres 

proved that OP Sm ρ,δ(n, 2) is closed under transposition 

for 0 6 δ 6 ρ 6 1 and δ < 1. In particular, given an operator 

in OP S0 1,δ(n, 2), its adjoints are also in OP S0 1,δ(n, 2). 

Since S 0 1,δ(n, 2) ⊂ S 0 1,1 (n, 2), it follows that symbols 
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in S 0 1,δ(n, 2) give rise to bounded operators, by applying 

the result of [11] quoted above. In summary, we see that OP 

S0 ρ,δ(n, 2) are bounded on appropriate Lebesgue spaces 

when ρ = 1 (that is, the Calder´on-Zygmund case), but in 

general they fail to be bounded when ρ = 0. The purpose of 

this paper is to address the following question, which is of 

interest for ρ in-between these values, ‘Given ρ 6 1, what m 

= m(ρ) 6 0 is sufficient to ensure that symbols in S m ρ,δ(n, 

N) give rise to bounded operators?’  

This question is in the spirit of questions asked in [2]. We 

will study this question for two different symbol classes. 

First, in Section 3, we will consider a larger symbol class 

which does not require any differentiability in the spatial 

variable at all. That is, we study the multilinear symbol class 

L∞S m ρ (n, N) (see Definition 2.1) which, in particular, 

contains S m ρ,δ(n, N) for any δ. Our main result in this 

context is Theorem 3.3, which generalises a result obtained 

by the present authors in [14] regarding the linear case. The 

study of such symbol classes originates in [12], where C. 

Kenig and the third author studied linear operators. In the 

context of multilinear operators, results regarding mildly 

regular bilinear operators have been proved previously. In 

particular, D. Maldonado and V. Naibo established in [13] 

boundedness properties of bilinear pseudodifferential 

operators on products of weighted Lebesgue, Hardy, and 

amalgam spaces. The regularity they require in the spatial 

variables is only that of Dini-type. Section 4 deals with 

linear operators on mixed-norm Lebesgue spaces, and is a 

corollary to the proof of Theorem 3.3. The second topic we 

will study is the bilinear symbol class S m ρ,δ(n, 2). In 

Section 5 we adapt methods used to study symbols in L∞S 

m ρ (n, N) to weaken the requirement on m necessary to 

prove boundedness on Lebesgue spaces of operators in OP 

Sm ρ,δ(n, 2) for δ 6 ρ. This is formulated as Theorem 5.5. In 

Section 6, although we cannot show boundedness for 

general operators arising from symbols in S 0 ρ,δ(n, 2), we 

can prove boundedness on a suitable subclass. This is stated 

as Theorem 6.2, which is a result of the same flavour as that 

proved by F. Bernicot and S. Shrivastava in [3] regarding a 

subclass of OP S0 0,0 (1, 2), albeit proved by more straight-

forward methods. A related result regarding OP S0 0,0 (n, 

2) was also proved in [5]. 

4. Conclusion 

In controlling height and width of a solution, the most 

important example of such spaces are the Lebesgue spaces 

Lp. Due to their rearrangement-invariant nature, these 

spaces are blind to the description of where solutions are 

concentrated, and thus the consideration of Lebesgue spaces 

with weights appears naturally. An important role is played 

by the so-called Muckenhoupt Ap weights. 

For nonlinear PDEs , the multilinear counterpart of 

pseudodifferential and Fourier integral operators play a 

crucial role. 

My recent research interests have been dealing with 

questions regarding both linear and multilinear operators of 

those described above, and in particular with those of rough 

type. 

To get involved in a project in these areas requires a strong 

background and interest in Harmonic Analysis and PDEs. 

Some examples of lines of research that one could pursue: 

● To develop an Ap-weighted theory for some 

classes of rough and mildly regular 

pseudodifferential operators, and find up-to-end-

point improvements of existing results in the 

literature. 

● To investigate the validity of corresponding end-

point estimates for such operators. 

● To develop the theory of spectral properties of 

rough pseudodifferential operators. 

● Study multilinear end-point results and results of 

minimal regularity assumptions, for paraproducts 

and their application to the study of boundedness 

properties of multilinear pseudodifferential and 

Fourier integral operators. 
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