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1. Introduction 

  B.M.Schein [1] considered systems of the form (X; o;/), 

where X is a set of functions closed under the composition “” 

of functions (and hence (X; o) is a function semigroup) and the 

set theoretic subtraction “/” (and hence (X;/) is a subtraction 

algebra in the sense of [1]).Y.B.Jun et al[2] introduced the 

notation of ideals in subtraction algebras and discussed the 

characterization of ideals.In[8], Y.B.Jun and H.S.Kim 

established the  ideal generated by a set, and discussed related 

results. The concept of fuzzy set was first initiated by Zadeh[7]. 

Narayanan et al.[5] defined the concept of generalized fuzzy 

ideals of near-rings.Mahalakshmi et al. [3] studied the notation 

of bi-ideals  in near subtraction semigroups. Manikandan [4] 

studied fuzzy  bi-ideals  in near-rings.  

2. Preliminaries 

Definition: 2.1 A nonempty set X together with binary 

operations ‘‘−’’ and is said to be subtraction algebra if it 

satisfies the following: 

(i ) x−(y−x) = x. 

(ii) x−(x – y ) = y−(y – x). 

(iii) (x – y) – z = (x – z)–y, 

for every x,y,zX. 

 Definition:2.2 A nonempty set X together with two binary 

operations ‘‘−’’ and ‘‘•’’ is said to be a subtraction semigroup if 

it satisfies the following: 

(i) (X,−) is a subtraction algebra.       

(ii) (X,•) is a semigroup. 

(iii)  x(y−z) = xy – xz and (x−y)z= x  

     for every x, y ,z X. 

Definition:2.3 A non  empty set X together with two binary 

operations ‘‘−’’and‘ ‘•’ ’is said to be a near subtraction 

semigroup(right) if it satisfies the following: 

(i) (X, −) is a subtraction algebra.    

(ii) (X, •) is a semigroup. 

(iii) (x − y)z=xz –yz 

            for everyx,y,zX. 

       It is clear that 0x = 0, for all x X. Similarly we can 

define a left near- subtraction semigroup. Here after a near – 

subtraction semigroup means only a right near-subtraction 

semigroup. 

Definition:2.4 A near subtraction semigroup X is said to be Zero 

– symmetric if x0 = 0 for every x X.  

Definition:2.5 A nonempty subset S of a subtraction semigroup 

X is said to be a subalgebra of X, if x–y S, for allx, yS. 

Definition:2.6 A nonempty subset S of a near - subtraction 

algebra X is said to be anear subtraction subsemigroupof X, if 

x–y S,xy S for allx,yX. 

Definition:2.7 Let (X, - , . ) be a near – subtraction semigroup. 

A nonempty subset I of X is called  

(i)   A left ideal  if I is a subalgebraof(X , – )    and xi – x ( y – i) 

 for all x , y  X and  i ϵI  

(ii) A right ideal I is a subalgebraof(X , – ) and IX I. 

(iii) An ideal of X if I is both left and right ideal of X. 

Definition:2.8 A fuzzy subset μ is called fuzzy ideal of X if it 

satisfies the following conditions: 

       (i) μ ( x – y) ≥ min {μ(x) ,μ(y) } 

     (ii) μ ( xi – x( y – i)) ≥ μ(i)  

      (iii) μ ( xy) ≥  μ(x)  for all x ,y  X 

Definition:2.9 A fuzzy  subset μ of X is said to be a 

fuzzysubalgebra of X, ifx,y X implies μ ( x – y) ≥ min {μ(x) 

,μ(y) } 

Definition: 2.10 A fuzzy subalgebra μ of  X is called a fuzzy bi-

ideal of X if  

(i) μ ( x – y) ≥ min {μ(x) ,μ(y)} 

(ii)  μ ( x y z) ≥ min {μ(x) ,μ(z) }  

for all x ,y ,z  X 

Example: Let X={0,a,b,c} in which ‘’ and ‘’are defined by  

 

 

 

 

 

Then (X, –, . ) is a near subtraction semigroup. Let μ: X→[ 

0, 1] be a fuzzy subset of X defined as μ(0) = 0.9 ,μ(a) = 0.7 

,μ(b) = 0.6 and μ(c) =0.4.Then μ is a fuzzy bi-ideal of X. 

. 0 a b c 

0 0 0 0 0 

a a a a a 

b 0 0 0 b 

c 0 0 0 c 

– 0 a b c 

0 0 0 0 0 

a a 0 a a 

b b b 0 b 

c c c c 0 



 P. Annamalai Selvi et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274, Vol. 3, 

Issue 1, Jan-April 2018, pp.15-18 

© 2018 IJIIR All Rights Reserved          page- 16- 

3. Anti-fuzzy bi-ideals 

Definition: 3.1 A fuzzy subalgebra  μ  of X is called a  anti-

fuzzy bi-ideal of X  if  

   (i) μ ( x – y) ≤ max {μ(x) ,μ(y) } 

   (ii) μ ( x y z) ≤ max {μ(x) ,μ(z) } 

       for all x ,y ,z  X. 

Example: Let X = {0,a,b,c} in which ‘’ and ‘’are defined by  

 

Then 

(X, –, . 

) is a 

near 

subtraction semigroup. Let μ: X→[ 0, 1] be a fuzzy subset 

of X defined as μ(0) = 0.6 ,μ(a) = 0.7 ,μ(b) = μ(c) =0.8.Then 

μ is an antifuzzy bi-ideal of X. But μ is not a fuzzy bi-ideal 

of X. Since μ(0)=μ(b–b) ≱ min{μ(b),μ(b)}. 

Definition: 3.12 A family of fuzzy set  

{μi /  I ˄} is a near-subtraction semigroup X, the union   

⋁ 𝜇𝑖𝑖∈∧ of  {μi /  i˄}is defined by (⋁ 𝜇𝑖𝑖∈∧   )   (x) = sup { μi 

(x) /  

 i ˄}for each x ∈ X. 

Definition:3.13  A family of fuzzy set  

{μi / i ˄} is a near-subtraction semigroup X, the 

intersection   ⋂ μi i ˄  of  {μi /  I ˄}is defined by 

(⋂ μi i ˄  )  (x) = inf{μi (x) / i ˄}for each x ∈ X. 

Definition:3.14 Let  f be a mapping from a set X to a set  Xˈ. 

Let 𝜇 𝑎𝑛𝑑 be fuzzy subset of X and Xˈ, respectively. Then f(𝜇 

), the image of  𝜇 under f  is a subset of X’ defined by   

f(𝜇 ) =     
𝑆𝑢𝑝

𝑥∈𝑓−1(𝑦)
𝜇 (x),    if f-1(y) ≠ 𝜙 

                otherwise,   0 

 And the pre-image of  under f is the fuzzy subset defined by 

f -1((x)) = (f(x)), for all   x∈ X and f -1 (y) = {x∈ X / f(x) = y}. 

Definitions: 3.15 A fuzzy bi-ideal 𝜇  of a near subtraction 

semigroup X is said to be normal if 𝜇(0) =1.An anti-fuzzy bi-

ideal 𝜇 of a near subtraction semigroup X is said to be complete 

if it is normal and there exists z ∈ X such that  𝜇 (z) = 0. 

Theorem:3.16 

   Let X be a near subtraction semigroup and μ be a fuzzy set  in 

X. Then μ is a fuzzy    bi-ideal in X  iff  μc  is a anti-fuzzy bi-

ideal. 

 For all x, y, z  ∈X. 

Proof: 

(i)μc( x – y ) = 1 – μ( x – y) 

                        ≤1 –min {μ(x),μ(y) } 

                        = max{ 1 – μ(x) ,  1 – μ(y) } 

                        = max{μc(x), μc(y) } 

    ∴μc( x – y ) ≤  max{ μc(x), μc(y) }     

(ii)μc( x yz )   = 1 – μ( x yz) 

                          ≤1 –min {μ(x) ,μ(z) } 

                         = max{1 – μ(x) ,1 – μ(z) } 

                        = max{μc(x), μc(z) } 

      ∴ μc( xyz ) ≤  max{ μc(x), μc(z) }   

Hence μ c is a anti-fuzzy bi-ideal in X. 

  Conversely assume that μcisa anti-fuzzy bi-ideal in X. For all 

x , y, z  ∈X. 

(i) μ( x – y ) = 1 – μc( x – y) 

                            ≥1 –max {μc(x) ,μc(y) } 

                = min{1 – μc(x) ,1 – μc(y) } 

                = min{ μ(x), μ(y) } 

μ( x – y ) ≥min{ μ(x), μ(y) }     

(ii)μ( x yz )   =  1 – μc( x yz) 

                            ≥1 –max {μc(x) ,μc(z) } 

                         = min{1– μc(x) ,1– μc(z) } 

                         = min{ μ(x), μ(z) } 

        ∴ μ( xyz ) ≥min{ μ(x), μ(z) }   

Hence  μis a fuzzy bi-ideal in X. 

Theorem:3.17 

              Let μ be a fuzzy set in a near subtraction semigroup X. 

Then μ is  a fuzzy  bi-ideal of  X iff the upper level cut ⋃(𝜇 ; 𝑡 ) 

of X is a  bi-ideal of X for each t ∈ [𝜇(0), 1]. 
Proof: 

         Let μ is  a fuzzy  bi-ideal of  X.Let x , y ∈ ⋃(𝜇 ; 𝑡 ).Then 

μ( x  ) ≥ t and  μ( y ) ≥ t. 

Now,  μ( x – y ) ≥  min{ μ(x), μ(y) } = t ⇒μ( x – y ) ≥  t and so 

x – y ∈ ⋃(𝜇 ; 𝑡). 

    Hence ⋃(𝜇 ; 𝑡 ) is a subalgebra of X. 

Let  x , z  ∈ ⋃(𝜇 ; 𝑡 ) and y ∈ 𝑋. 

Then μ( x  ) ≥ t and μ( z  ) ≥ t. 

Now μ( xyz ) ≥min{ μ(x), μ(z) } = t ⇒μ( xyz ) ≥ t, and so 

xyz ∈ ⋃(𝜇 ; 𝑡). 

      Hence ⋃(𝜇 ; 𝑡 ) is a bi-ideal of X. 

Conversely assume that ⋃(𝜇 ; 𝑡 )  is a bi-ideal of X.To prove that 

μ is  a fuzzy  bi-ideal of  X. 

Suppose μis  not a fuzzy  bi-ideal of  X. Suppose x, y ∈X and  

μ( x – y ) <  min{ μ(x), μ(y) }.Choose t such that  μ( x – y ) <
𝑡 < min{ μ(x), μ(y)}.Then we get x , y ∈ ⋃(𝜇 ; 𝑡 ). 

But x – y ∉ ⋃(𝜇 ; 𝑡 ).which is a contraction. 

Hence μ( x – y ) ≥  min{ μ(x), μ(y) } . 

Suppose x , y, z  ∈ X.μ( xyz) <  min{ μ(x), μ(z) }. 

   Choose t such that μ( xyz ) < 𝑡 < min{ μ(x), μ(z)}. Then we 

get x, z ∈ ⋃(𝜇 ; 𝑡 ). 

But xyz ∉ ⋃(𝜇 ; 𝑡 ).which is a contraction. 

Hence μ( xyz) ≥  min{ μ(x), μ(z) } . 

 Hence μ is a fuzzy bi-ideal of  X. 

Theorem: 3.18 

If {μi/  i˄} is a family of fuzzy bi-ideals of a near 

subtraction semigroup X. 

Then ⋂ 𝜇𝑖𝑖∈∧ is a  fuzzy bi-ideal. 

Proof: 

       Let {μi/  i˄} is a family of fuzzy bi-ideals of a near 

subtraction semigroup X. 

Let  x , y, z  ∈ X. 

(i)⋂ 𝜇𝑖𝑖∈∧
( x – y ) =inf{μi (x – y ) / i ⋀ } 

                          ≥inf {min{μi(x), μi(y)  / i⋀ } 

= min{inf{ μi(x) / i ⋀} , inf{μi(y) / i ⋀}}                        =min 

{ (⋀ μi𝑖∈⋀ ) ( x) , ( ⋀ μi𝑖∈⋀ )  ) ( y) } 

– 0 a b c 

0 0 0 0 0 

a a 0 a a 

b b b 0 b 

c c c c 0 

. 0 a b c 

0 0 0 0 0 

a 0 b 0 b 

b 0 0 0 0 

c 0 b 0 b 
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∴ ⋂ 𝜇𝑖𝑖∈∧ ( x – y)≥min{ ( ⋀ μi𝑖∈⋀ )  ) ( x) ,  

                                           ( ⋀ μi𝑖∈⋀
) ) ( y) } 

(ii)⋂ 𝜇𝑖𝑖∈∧ ( xyz ) = inf{μi (xyz ) / i ⋀ } 

                         ≥inf {min{μi(x), μi(z)  / i ⋀ } 

                     = min{inf{ μi(x) / i ⋀ }, 

                                             inf{μi(z) / i }} 

       = min { (⋀ 𝜇𝑖𝑖∈⋀
 ) ( x) , ((⋀ 𝜇𝑖𝑖∈⋀

) ( z) } 

∴ ⋂ 𝜇𝑖𝑖∈∧ ( xyz )≥ min {( ⋀ 𝜇𝑖𝑖∈⋀
) ( x) , 

                                             ( ⋀ 𝜇𝑖𝑖∈⋀
) ( z) } 

  Hence  ∴ ⋂ 𝜇𝑖𝑖∈∧   is a fuzzy bi-ideal of X. 

Theorem:3.19 

Let μ be a fuzzy bi ideal of a near subtraction semigroup X 

and μ* be a fuzzy set in X defined by 

 μ*( x ) = μ ( x ) + 1 – μ ( 0 ) for all  

x ∈ 𝑋.Then μ* is a fuzzy bi-ideal of X containing μ. 

  Proof: 

      Let μ be a fuzzy bi ideal of a near subtraction semigroup 

X. For any x , y ∈ 𝑋. 
( i )  μ* ( x  – y ) = μ ( x – y ) + 1 – μ ( 0) 

                          ≥min{ μ(x), μ(y) } + 1 – μ (0) 

                      = min { μ(x)  +1 – μ ( 0 ),  

                                          μ(y)  + 1 – μ ( 0 ) } 

                      = min { μ* ( x ) , μ* ( y ) } 

∴ μ* ( x  – y ) ≥ min { μ* ( x ) , μ* ( y )} 

        For any x , y , z  ∈ 𝑋. 
( ii )    μ* ( xyz ) = μ ( xyz ) + 1 – μ ( 0 ) 

                     ≥min{ μ(x), μ(z) } + 1 – μ ( 0 ) } 

                  = min { μ(x)  +1 – μ ( 0 ), 

                                          μ(z)  + 1 –μ ( 0 ) } 

                  = min { μ* ( x ) , μ* ( z ) } 

∴ μ* ( xyz ) ≥ min { μ* ( x ) , μ* ( z ) } 

Theorem:3.20 

       If μ is  a fuzzy bi ideal of a near subtraction semigroup 

X, then(μ∗)∗ = μ*  

  Proof: 

For any x ∈ 𝑋. We have  

    (μ∗)∗ = μ*( x ) + 1 – μ* ( 0 ) 

              =[ μ ( x ) + 1 – μ ( 0 ) ] + 

                    1 – [μ ( 0 ) + 1 – μ ( 0 ) ] 

           =[ μ( x ) + 1 – μ ( 0 )  + 1 – μ ( 0 )   

                         +1 – μ ( 0 )] 

           =μ ( x ) + 1 – μ ( 0 )  

           =   μ*  

Therefore,(μ∗)∗ = μ* 

Theorem:3.21 

            Let f: X → X’ be a onto homomorphism of a near 

subtraction semigroup X. Then we have that  

(1)If   be a fuzzy bi-ideal of Xˈ, then  

          f -1() is a fuzzy bi-ideal in X. 

(2)If µ be a fuzzy bi-ideal of X, then  

         f(µ) is a fuzzy bi-ideal in Xˈ. 

Proof:  

(1) Let  be a fuzzy bi-ideal of X’. 

            Let x , y , z  ∈ 𝑋. 

(i) f -1 ( )( x  – y ) =  ( f(x  – y)) 

                  =  ( f(x) – f(y) ) 

       ≥min{ ( f(x)), (f(y)) } 

      = min { f -1() (x) , f- 1() (y)} 

∴ f -1 (  ) ( x  – y )≥min  

 { f -1 ()(x) , f -1() (y) } 

(ii)f -1 (  ) ( xyz ) = (f(xyz)) 

                  =  ( f(x) f(y) f(z) ) 

     ≥min{ ( f(x)) , (f(z)) } 

                    = min { f -1 () (x) , f -1 () (z)} 

∴f -1 ( ) ( xyz )≥ min{ f -1()(x),                      

                                    f -1 ()(z)} 

Hence f -1() is a fuzzy bi-ideal of  X. 

(2) Let  µ be a fuzzy bi-ideal of X. 

              Let y1 , y2 , y3  ∈ 𝑋′.Then we have 

{ x / x∈ f -1(y1  y2)}⊇{ x1x2 / x1∈f -1(y1)  

                                         &x2∈f -1(y2)  } 

(i)f(µ)(y1  y2)= Sup{µ(x)/x∈ f -1(y1y2)} 

                   ≥Sup { µ (x1x2 ) / x1∈f -1(y1)& 

                                                x2∈f -1(y2)} 

          

       ≥Sup{min{ µ (x1),µ(x2 ) / x1∈f -1(y1)               

                                                &x2∈f -1(y2)} 

                    ≥min {Sup{ µ (x1)/x1∈f-1(y1)}& 

                                Sup{ µ(x2 ) /x2∈f-1(y2)} 

                  = min { f(µ) (y1) , f(µ) (y2) } 

Therefore   f(µ) (y1  y2) ≥min{ f(µ) (y1) ,  

                                                  f(µ) (y2) } 

Let y1 , y2 , y3  ∈ 𝑋′. 
(i)f (µ) (y1 y2 y3)  = Sup { µ(x) /  

                                   x∈ f -1 (y1y2y3)} 

                   ≥Sup {µ(x1x2x3 ) / x1∈f -1(y1) & 

                                                  x3∈f -1(y3) } 

      ≥Sup {min{ µ (x1),µ(x3 ) / x1∈f -1(y1)& 

                                                   x3∈f -1(y3)} 

         ≥min {Sup{ µ (x1)/x1∈f -1(y1)} & 

                            Sup{ µ(x3 ) / x2 ∈f -1(y3) } 

                = min { f(µ) (y1) , f(µ) (y3) } 

∴f (µ) (y1 y2 y3) ≥min f(µ) (y1) , f(µ) (y3) } 

Hence f(µ) is a fuzzy bi-ideal in Xˈ. 

Theorem:3.22 

       If  is normal anti-fuzzy bi –ideal of a near subtraction 

semigroup X iff  μ*= μ . 

Proof: 

     The sufficient part is obivious.To prove the necessary 

part, let us suppose that  is normal anti-fuzzy bi –ideal of a 

near subtraction semigroup X. Let x  ∈ 𝑋.Since  is normal. 

μ* (x)  = μ (x) + 1 – μ (0)  

           =  μ (x) + 1 – 1 

           =μ (x) 

Hence μ* = μ  

Theorem:3.23 

     Let μ be an anti-fuzzy bi-ideal of a near subtraction 

semigroup X, and t be fixed element of X such that μ (0) ≠ 

μ (t). Define a fuzzy set μ*in X by 

μ* (x) =
𝜇 (𝑥)– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
   for all x  ∈ 𝑋.Then μ* is normal anti-fuzzy 

bi-ideal of  a near subtraction semigroup X. 

Proof: 

    Let μ be an anti-fuzzy bi-ideal of a near subtraction 

semigroup X.  

For any x , y  ∈  𝑋. 
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(i) μ* ( x  – y ) =  
𝜇 (𝑥 –𝑦 )– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 

                   ≤  
max{ 𝜇 (𝑥),𝜇 (𝑦)}– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 

                    = max   
𝜇 (𝑥  )– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 , 

𝜇 (𝑦 )– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 

                   = max {   μ* (x), μ* (y) }   

Therefore μ*( x  – y) ≥ max{μ* (x) , μ* (y) }   

For any x , y , z  ∈  𝑋. 

μ* ( xyz ) =  
𝜇 (𝑥 𝑦𝑧)– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 

                ≤  max{ 𝜇 (𝑥),𝜇 (𝑧)}– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 

               = max    
𝜇 (𝑥  )– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 , 

𝜇 (𝑧 )– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 

               = max {   μ* (x), μ* (z) }   

Therefore μ*( xyz ) ≥ max{μ* (x) , μ* (z) }   

Hence μ* is an anti- fuzzy bi-ideal of  X. 

Also μ* (0) =
𝜇 (0)– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
   = 1, μ* is normal. 

Since t ∈ X and   μ* (t) =
𝜇 (𝑡)– 𝜇 (𝑡)

𝜇 (0)– 𝜇 (𝑡)
 = 0 

We have μ* is a complete anti-fuzzy bi-ideal on X. 

Theorem:3.24 

     Let μ be an anti-fuzzy bi-ideal of a near subtraction 

semigroup X, and let 

 f: [ 0 , μ (0)] →[0 , 1] be an increasing function. Then the 

fuzzy set  

μ f (x) = f ( μ (x) ) is a anti-fuzzy bi-ideal of X. In particular,if 

f[ μ(0)] = 1 then μ f is normal and if f (t) ≥ t for all t ∈[ 0 , μ 

(0)] then μ ⊆  𝜇f. 

Proof: 

    For any  x, y ∈ X. 

(i)𝜇f ( x – y ) = f ( μ( x – y)) 

                 ≤ f ( max { μ (x) , μ (y)}) 

                  = max { f (μ (x)) , f (μ (y)) } 

                  = max {  𝜇f (x) , 𝜇f (y) } 

∴ 𝜇f ( x – y ) ≤  max {  𝜇f (x) , 𝜇f (y) } 

For any x, y, z∈ X. 

(ii)𝜇f ( xyz)= f ( μ( x y z)) 

              ≤ f ( max { μ (x) , μ (z)})                                

            = max { f (μ (x)) , f (μ (z)) } 

            = max {  𝜇f (x) , 𝜇f (z) } 

∴ 𝜇f ( xyz) ≤  max {  𝜇f (x) , 𝜇f (z) } 

Hence μf  is a anti-fuzzy bi-ideal of X. 

If   f [ μ(0)] = 1 then μ f ( 0) = 1. 

Thus μf is normal .Assume that   

f (t) = f [μ(x)] ≥ μ (x) , for any x ∈ X which implies μ ⊆  𝜇f  
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