On Anti-Fuzzy Bi-ideals In Near Subtraction Semigroups

P. Annamalai Selvi¹, R. Sumitha², Dr. S. Jayalakshmi³

^{1,2}Research Scholar, Sri Parasakthi College for Women, Courtallam. India. ³Associate Professor, Sri Parasakthi College for Women, Courtallam. India.

Abstract: In this paper we introduce the notation of anti-fuzzy bi-ideals innear subtraction semigroup and give some characterizations of fuzzy bi-ideals in near subtraction semigroup. We establish that every fuzzy right ideal, fuzzy ideals are fuzzy bi-ideals of a near-subtraction semigroup. But the converse is not necessarily true as shown by anexample.

Key words: Near subtraction semigroups, fuzzy bi-ideal, anti fuzzy bi-ideal.

Introduction

B.M.Schein [1] considered systems of the form (X; o; /), where X is a set of functions closed under the composition "o" of functions (and hence (X; o) is a function semigroup) and the set theoretic subtraction "/" (and hence (X;/) is a subtraction algebra in the sense of [1]).Y.B.Jun et al[2] introduced the notation of ideals in subtraction algebras and discussed the characterization of ideals.In[8], Y.B.Jun and H.S.Kim established the ideal generated by a set, and discussed related results. The concept of fuzzy set was first initiated by Zadeh[7]. Narayanan et al.[5] defined the concept of generalized fuzzy ideals of near-rings. Mahalakshmi et al. [3] studied the notation of bi-ideals in near subtraction semigroups. Manikandan [4] satisfies the following conditions: studied fuzzy bi-ideals in near-rings.

2. **Preliminaries**

Definition: 2.1 A nonempty set X together with binary operations "-" and is said to be subtraction algebra if it satisfies the following:

(i)
$$x-(y-x) = x$$
.

(ii)
$$x-(x-y) = y-(y-x)$$
.

(iii)
$$(x - y) - z = (x - z) - y$$
,

for every $x,y,z \in X$.

Definition: 2.2 A nonempty set X together with two binary Definition: 2.10 A fuzzy subalgebra μ of X is called a fuzzy bioperations "-" and "•" is said to be a subtraction semigroup if it satisfies the following:

- (i) (X,-) is a subtraction algebra.
- (ii) (X, \bullet) is a semigroup.
- (iii) x(y-z) = xy xz and (x-y)z = x

for every $x, y, z \in X$.

Definition:2.3 A non empty set X together with two binary **Example:** Let X={0,a,b,c} in which '-' and '•' are defined by operations "-"and" is said to be a near subtraction semigroup(right) if it satisfies the following:

- (i) (X, -) is a subtraction algebra.
- (ii) (X, \bullet) is a semigroup.
- (iii) (x y)z = xz yz

for every $x,y,z \in X$.

It is clear that 0x = 0, for all $x \in X$. Similarly we can define a left near- subtraction semigroup. Here after a near subtraction semigroup means only a right near-subtraction semigroup.

Definition:2.4 A near subtraction semigroup X is said to be Zero - symmetric if x0 = 0 for every $x \in X$.

Definition:2.5 A nonempty subset S of a subtraction semigroup X is said to be a subalgebra of X, if $x-y \in S$, for all $x, y \in S$.

Definition:2.6 A nonempty subset S of a near - subtraction algebra X is said to be anear subtraction subsemigroup of X, if $x-y \in S, xy \in S \text{ for all } x,y \in X.$

Definition:2.7 Let (X, -, .) be a near – subtraction semigroup. A nonempty subset I of X is called

- (i) A left ideal if I is a subalgebraof(X, -) and xi x (y i) \in for all x, y \in X and i \in I
- (ii) A right ideal I is a subalgebraof(X, -) and IX \subseteq I.
- (iii) An ideal of X if I is both left and right ideal of X.

Definition:2.8 A fuzzy subset μ is called fuzzy ideal of X if it

(i)
$$\mu$$
 (x – y) \geq min { μ (x) , μ (y) }

(ii)
$$\mu$$
 (xi – x(y – i)) $\geq \mu$ (i)

(iii)
$$\mu(xy) \ge \mu(x)$$
 for all $x, y \in X$

Definition:2.9 A fuzzy subset μ of X is said to be a fuzzysubalgebra of X, if $x,y \in X$ implies $\mu(x-y) \ge \min \{\mu(x)\}$ $,\mu(y)$ }

ideal of X if

- μ (x y) \geq min { μ (x), μ (y)} (i)
- μ (x y z) \geq min { μ (x), μ (z) } (ii)

for all
$$x, y, z \in X$$

_	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

•	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	0	0	b
c	0	0	0	c

Then (X, -, ...) is a near subtraction semigroup. Let $\mu: X \rightarrow [$ 0, 1] be a fuzzy subset of X defined as $\mu(0) = 0.9$, $\mu(a) = 0.7$ $\mu(b) = 0.6$ and $\mu(c) = 0.4$. Then μ is a fuzzy bi-ideal of X.

P. Annamalai Selvi et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274, Vol. 3, Issue 1, Jan-April 2018, pp.15-18

3. Anti-fuzzy bi-ideals

Definition: 3.1 A fuzzy subalgebra μ of X is called a antifuzzy bi-ideal of X if

(i)
$$\mu$$
 ($x - y$) $\leq max \{ \mu(x), \mu(y) \}$

(ii)
$$\mu$$
 (x y z) \leq max { μ (x), μ (z) }

for all $x, y, z \in X$.

Example: Let $X = \{0,a,b,c\}$ in which '-' and '•' are defined by

_	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
C	C	C	C	0

	0	a	b	c	
0	0	0	0	0	Then $(X, -,)$ is a
a	0	b	0	b	
b	0	0	0	0	
c	0	b	0	b	near
					ncai

subtraction semigroup. Let μ : $X \rightarrow [0, 1]$ be a fuzzy subset of X defined as $\mu(0) = 0.6$, $\mu(a) = 0.7$, $\mu(b) = \mu(c) = 0.8$. Then μ is an antifuzzy bi-ideal of X. But μ is not a fuzzy bi-ideal of X. Since $\mu(0)=\mu(b-b) \not \geq \min\{\mu(b),\mu(b)\}$.

Definition: 3.12 A family of fuzzy set

 $\{\mu_i \mid I \in \Lambda\}$ is a near-subtraction semigroup X, the union $\bigvee_{i \in \Lambda} \mu_i$ of $\{\mu_i \mid i \in \Lambda\}$ is defined by $(\bigvee_{i \in \Lambda} \mu_i)$ (x) = sup $\{\mu_i \mid (x) \mid$

 $i \in \Lambda$ for each $x \in X$.

Definition:3.13 A family of fuzzy set

 $\{ \mu_i \ / \ i \in \land \} \ \text{ is a near-subtraction semigroup } X, \text{ the intersection } \bigcap_{\ i \in \land} \mu i \text{ of } \{ \mu_i \ / \ I \in \land \} \text{is defined by } \\ \big(\bigcap_{\ i \in \land} \mu i \ \big) \ (x) = \inf \{ \mu_i \ (x) \ / \ i \in \land \} \text{for each } x \in X.$

Definition:3.14 Let f be a mapping from a set X to a set X'. Let μ and λ be fuzzy subset of X and X', respectively. Then $f(\mu)$, the image of μ under f is a subset of X' defined by

$$f(\mu) = \underbrace{\int_{x \in f^{-1}(y)}^{sup} \mu(x)}_{\text{otherwise, } 0} \mu(x), \quad \text{if } f^{-1}(y) \neq \phi$$

And the pre-image of λ under f is the fuzzy subset defined by $f^{-1}(\lambda(x)) = \lambda(f(x))$, for all $x \in X$ and $f^{-1}(y) = \{x \in X \mid f(x) = y\}$. **Definitions:** 3.15 A fuzzy bi-ideal μ of a near subtraction semigroup X is said to be normal if $\mu(0) = 1$. An anti-fuzzy bi-ideal μ of a near subtraction semigroup X is said to be complete if it is normal and there exists $z \in X$ such that $\mu(z) = 0$.

Theorem: 3.16

Let X be a near subtraction semigroup and μ be a fuzzy set in X. Then μ is a fuzzy bi-ideal in X iff μ^c is a anti-fuzzy bi-ideal.

For all $x, y, z \in X$.

Proof:

$$\begin{split} (i)\mu^c(\; x-y\;) &= 1-\mu(\; x-y) \\ &\leq 1-min\; \{\mu(x),\!\mu(y)\;\} \\ &= max\{\; 1-\mu(x)\;,\;\; 1-\mu(y)\;\} \\ &= max\{\mu^c(x),\; \mu^c(y)\;\} \\ \\ & \dot{\mu}^c(\; x-y\;) \leq \; max\{\; \mu^c(x),\; \mu^c(y)\;\} \end{split}$$

(ii)
$$\mu^{c}(x yz) = 1 - \mu(x yz)$$

 $\leq 1 - \min \{\mu(x), \mu(z)\}$
 $= \max\{1 - \mu(x), 1 - \mu(z)\}$
 $= \max\{\mu^{c}(x), \mu^{c}(z)\}$
 $\therefore \mu^{c}(xyz) \leq \max\{\mu^{c}(x), \mu^{c}(z)\}$
Hence μ^{c} is a anti-fuzzy bi-ideal in X.

Conversely assume that μ^c is a anti-fuzzy bi-ideal in X. For all x, y, $z \in X$.

(i)
$$\mu(x - y) = 1 - \mu^{c}(x - y)$$

 $\geq 1 - \max \{ \mu^{c}(x), \mu^{c}(y) \}$
 $= \min\{1 - \mu^{c}(x), 1 - \mu^{c}(y) \}$
 $= \min\{ \mu(x), \mu(y) \}$
 $\therefore \mu(x - y) \geq \min\{ \mu(x), \mu(y) \}$
(ii) $\mu(x yz) = 1 - \mu^{c}(x yz)$
 $\Rightarrow 1 - \max\{ \mu^{c}(x), \mu^{c}(z) \}$
 $\Rightarrow \min\{1 - \mu^{c}(x), 1 - \mu^{c}(z) \}$
It $\Rightarrow \min\{ \mu(x), \mu(z) \}$
 $\Rightarrow \mu(xyz) \geq \min\{ \mu(x), \mu(z) \}$

Hence µis a fuzzy bi-ideal in X.

Theorem: 3.17

Let μ be a fuzzy set in a near subtraction semigroup X. Then μ is a fuzzy bi-ideal of X iff the upper level cut $U(\mu;t)$ of X is a bi-ideal of X for each $t \in [\mu(0), 1]$.

Proof:

Let μ is a fuzzy bi-ideal of X.Let x , y \in U(μ ; t).Then μ (x) \geq t and μ (y) \geq t.

Now, $\mu(x-y) \ge \min\{ \mu(x), \mu(y) \} = t \Rightarrow \mu(x-y) \ge t$ and so $x-y \in U(\mu;t)$.

Hence $U(\mu;t)$ is a subalgebra of X.

Let $x, z \in U(\mu; t)$ and $y \in X$.

Then $\mu(x) \ge t$ and $\mu(z) \ge t$.

Now $\mu(xyz) \ge \min\{ \mu(x), \mu(z) \} = t \Rightarrow \mu(xyz) \ge t$, and so $xyz \in U(\mu;t)$.

Hence $\bigcup (\mu; t)$ is a bi-ideal of X.

Conversely assume that $U(\mu;t)$ is a bi-ideal of X.To prove that μ is a fuzzy bi-ideal of X.

Suppose μ is not a fuzzy bi-ideal of X. Suppose x, y \in X and $\mu(x-y) < \min\{\mu(x), \mu(y)\}$. Choose t such that $\mu(x-y) < t < \min\{\mu(x), \mu(y)\}$. Then we get x, y \in U(μ ; t).

But $x - y \notin U(\mu; t)$. which is a contraction.

Hence $\mu(x - y) \ge \min\{\mu(x), \mu(y)\}$.

Suppose x, y, z \in X. μ (xyz) < min{ μ (x), μ (z)}.

Choose t such that $\mu(xyz) < t < \min\{ \mu(x), \mu(z) \}$. Then we get $x, z \in U(\mu; t)$.

But xyz $\notin U(\mu; t)$.which is a contraction.

Hence $\mu(xyz) \ge \min\{ \mu(x), \mu(z) \}$.

Hence μ is a fuzzy bi-ideal of X.

Theorem: 3.18

If $\{\mu_{i}/\ i\in \Lambda\}$ is a family of fuzzy bi-ideals of a near subtraction semigroup X.

Then $\bigcap_{i \in \Lambda} \mu_i$ is a fuzzy bi-ideal.

Proof.

Let $\{\mu_i / i \in \Lambda\}$ is a family of fuzzy bi-ideals of a near subtraction semigroup X.

Let $x, y, z \in X$.

$$\begin{aligned} (i) \bigcap_{i \in \Lambda} \mu_i(x - y) &= \inf\{\mu_i(x - y) / i \in \Lambda \} \\ &= \inf\{\min\{\mu_i(x), \mu_i(y) / i \in \Lambda \} \} \\ &= \min\{\inf\{\mu_i(x) / i \in \Lambda \}, \inf\{\mu_i(y) / i \in \Lambda \} \} \\ &\{ (\bigwedge_{i \in \Lambda} \mu_i) (x), (\bigwedge_{i \in \Lambda} \mu_i)) (y) \} \end{aligned} = \min$$

P. Annamalai Selvi et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274, Vol. 3, Issue 1, Jan-April 2018, pp.15-18

Let μ be a fuzzy bi ideal of a near subtraction semigroup X and μ^* be a fuzzy set in X defined by

 $\mu^*(x) = \mu(x) + 1 - \mu(0)$ for all

 $x \in X$. Then μ^* is a fuzzy bi-ideal of X containing μ .

Proof:

Let μ be a fuzzy bi ideal of a near subtraction semigroup X. For any x , y \in X.

(i)
$$\mu^*(x-y) = \mu(x-y) + 1 - \mu(0)$$

 $\geq \min\{\mu(x), \mu(y)\} + 1 - \mu(0)$
 $= \min\{\mu(x) + 1 - \mu(0), \mu(y) + 1 - \mu(0)\}$
 $= \min\{\mu^*(x), \mu^*(y)\}$
 $\therefore \mu^*(x-y) \geq \min\{\mu^*(x), \mu^*(y)\}$
For any $x, y, z \in X$.
(ii) $\mu^*(xyz) = \mu(xyz) + 1 - \mu(0)$
 $\geq \min\{\mu(x), \mu(z)\} + 1 - \mu(0)$
 $= \min\{\mu(x) + 1 - \mu(0), \mu(z) + 1 - \mu(0)\}$
 $= \min\{\mu^*(x), \mu^*(z)\}$
 $\therefore \mu^*(xyz) \geq \min\{\mu^*(x), \mu^*(z)\}$

Theorem: 3.20

If μ is a fuzzy bi ideal of a near subtraction semigroup X, then $(\mu^*)^* = \mu^*$

Proof:

For any $x \in X$. We have

$$(\mu^*)^* = \mu^*(x) + 1 - \mu^*(0)$$

$$= [\mu(x) + 1 - \mu(0)] +$$

$$1 - [\mu(0) + 1 - \mu(0)]$$

$$= [\mu(x) + 1 - \mu(0) + 1 - \mu(0)$$

$$+ 1 - \mu(0)]$$

$$= \mu(x) + 1 - \mu(0)$$

$$= \mu^*$$

Therefore, $(\mu^*)^* = \mu^*$

Theorem: 3.21

Let $f: X \to X'$ be a onto homomorphism of a near subtraction semigroup X. Then we have that

(1)If λ be a fuzzy bi-ideal of X', then f'-1(λ) is a fuzzy bi-ideal in X.
(2)If μ be a fuzzy bi-ideal of X, then f(μ) is a fuzzy bi-ideal in X'.

Proof:

(1) Let λ be a fuzzy bi-ideal of X'. Let x, y, $z \in X$.

(i)
$$f^{-1}(\lambda)(x - y) = \lambda (f(x - y))$$

= $\lambda (f(x) - f(y))$
 $\geq \min\{\lambda (f(x)), \lambda (f(y))\}$
= $\min\{f^{-1}(\lambda)(x), f^{-1}(\lambda)(y)\}$

```
∴ f<sup>-1</sup> (\lambda) (x - y) \geq min
                  \{ f^{-1}(\lambda)(x), f^{-1}(\lambda)(y) \}
     (ii)f<sup>-1</sup> (\lambda) (xyz) = \lambda(f(xyz))
                                   = \lambda (f(x) f(y) f(z))
                      > \min\{\lambda (f(x)), \lambda (f(z))\}
                  = min { f^{-1}(\lambda)(x), f^{-1}(\lambda)(z)}
                  \thereforef<sup>-1</sup> (\lambda) (xyz) \geq min{ f<sup>-1</sup>(\lambda)(x),
                                               f^{-1}(\lambda)(z)
     Hence f^{-1}(\lambda) is a fuzzy bi-ideal of X.
     (2) Let \mu be a fuzzy bi-ideal of X.
             Let y_1, y_2, y_3 \in X'. Then we have
   \{x \mid x \in f^{-1}(y_1 - y_2)\} \supseteq \{x_1 - x_2 \mid x_1 \in f^{-1}(y_1)\}
                                         &x_2 \in f^{-1}(y_2) }
      (i) f(\mu)(y_1 - y_2) = \sup \{ \mu(x) / x \in f^{-1}(y_1 - y_2) \}
                \geqSup { \mu(x_1-x_2)/x_1 \in f^{-1}(y_1)&
                                             x_2 \in f^{-1}(y_2)
      \geq Sup\{min\{ \mu(x_1), \mu(x_2) / x_1 \in f^{-1}(y_1) \}
                                             &x_2 \in f^{-1}(y_2)
                > \min \{ \sup \{ \mu(x_1)/x_1 \in f^{-1}(y_1) \} \& 
                              Sup{ \mu(x_2)/x_2 \in f^{-1}(y_2)}
                 = min { f(\mu)(y_1), f(\mu)(y_2) }
Therefore f(\mu)(y_1 - y_2) \ge \min\{f(\mu)(y_1),
                                              f(\mu)(y_2)
Let y_1, y_2, y_3 \in X'.
   (i)f (\mu) (y_1 y_2 y_3) = Sup { \mu(x) /
                              x \in f^{-1}(y_1y_2y_3)
                \geq Sup \{ \mu(x_1x_2x_3) / x_1 \in f^{-1}(y_1) \&
                                              x_3 \in f^{-1}(y_3)
     \geqSup {min{ \mu(x_1), \mu(x_3) / x_1 \in f^{-1}(y_1) \&
                                               x_3 \in f^{-1}(y_3)
       \geq \min \{ \sup \{ \mu(x_1)/x_1 \in f^{-1}(y_1) \} \& 
                          Sup{ \mu(x_3) / x_2 \in f^{-1}(y_3) }
               = \min \{ f(\mu) (y_1), f(\mu) (y_3) \}
f(\mu) (y_1 y_2 y_3) \ge \min f(\mu) (y_1), f(\mu) (y_3)
```

Theorem: 3.22

If μ is normal anti-fuzzy bi –ideal of a near subtraction semigroup X iff $\;\mu^* {=}\; \mu$.

Hence $f(\mu)$ is a fuzzy bi-ideal in X'.

Proof

The sufficient part is obivious. To prove the necessary part, let us suppose that μ is normal anti-fuzzy bi –ideal of a near subtraction semigroup X. Let $x \in X$. Since μ is normal.

$$\mu^{*}(x) = \mu(x) + 1 - \mu(0)$$

$$= \mu(x) + 1 - 1$$

$$= \mu(x)$$
Hence $\mu^{*} = \mu$

Theorem: 3.23

Let μ be an anti-fuzzy bi-ideal of a near subtraction semigroup X, and t be fixed element of X such that μ (0) \neq μ (t). Define a fuzzy set μ^* in X by

 $\mu^*(x) = \frac{\mu(x) - \mu(t)}{\mu(0) - \mu(t)}$ for all $x \in X$. Then μ^* is normal anti-fuzzy bi-ideal of a near subtraction semigroup X.

Proof:

Let $\boldsymbol{\mu}$ be an anti-fuzzy bi-ideal of a near subtraction semigroup X.

For any x, $y \in X$.

P. Annamalai Selvi et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274, Vol. 3, Issue 1, Jan-April 2018, pp.15-18

(i)
$$\mu^*$$
 ($x - y$) = $\frac{\mu(x - y) - \mu(t)}{\mu(0) - \mu(t)}$
 $\leq \frac{\max\{\mu(x), \mu(y)\} - \mu(t)}{\mu(0) - \mu(t)}$, $\frac{\mu(y) - \mu(t)}{\mu(0) - \mu(t)}$
= $\max\{\frac{\mu(x) - \mu(t)}{\mu(0) - \mu(t)}, \frac{\mu(y) - \mu(t)}{\mu(0) - \mu(t)}$
= $\max\{\frac{\mu(x), \mu(y)}{\mu(0) - \mu(t)}, \frac{\mu(y) - \mu(t)}{\mu(0) - \mu(t)}$
For any $x, y, z \in X$.
 μ^* (xyz) = $\frac{\mu(xyz) - \mu(t)}{\mu(0) - \mu(t)}$
 $\leq \frac{\max\{\mu(x), \mu(z)\} - \mu(t)}{\mu(0) - \mu(t)}$
= $\max\{\frac{\mu(x) - \mu(t)}{\mu(0) - \mu(t)}, \frac{\mu(z) - \mu(t)}{\mu(0) - \mu(t)}$
= $\max\{\frac{\mu(x) - \mu(t)}{\mu(0) - \mu(t)}, \frac{\mu(z) - \mu(t)}{\mu(0) - \mu(t)}$
Therefore μ^* (xyz) $\geq \max\{\mu^*$ (x), μ^* (z) $\}$
Hence μ^* is an anti-fuzzy bi-ideal of X .
Also μ^* (0) = $\frac{\mu(0) - \mu(t)}{\mu(0) - \mu(t)}$ = 1, μ^* is normal.

We have μ^* is a complete anti-fuzzy bi-ideal on X.

Since $t \in X$ and $\mu^*(t) = \frac{\mu(t) - \mu(t)}{\mu(t)} = 0$

Theorem: 3.24

Let μ be an anti-fuzzy bi-ideal of a near subtraction semigroup X, and let

f: [0 , μ (0)] \rightarrow [0 , 1] be an increasing function. Then the fuzzy set

 $\begin{array}{l} \mu_{\,f}\left(x\right) = f\left(\,\mu\left(x\right)\,\right) \text{ is a anti-fuzzy bi-ideal of }X.\text{ In particular,if }\\ f[\,\,\mu(0)] = 1 \text{ then }\mu_{\,f}\text{ is normal and if }f\left(t\right) \geq t\text{ for all }t\in[\,0\,\,,\,\mu\\ (0)]\text{ then }\mu\subseteq\,\mu_{f}. \end{array}$

Proof:

```
For any x, y \in X.

(i)\mu_f(x-y) = f(\mu(x-y))

\leq f(\max\{\mu(x), \mu(y)\})

= \max\{f(\mu(x)), f(\mu(y))\}

= \max\{\{\mu_f(x), \mu_f(y)\}\}

\therefore \mu_f(x-y) \leq \max\{\{\mu_f(x), \mu_f(y)\}\}

For any x, y, z \in X.

(ii)\mu_f(xyz) = f(\mu(xyz))

\leq f(\max\{\{\mu(x), \mu(z)\})

= \max\{\{f(\mu(x)), f(\mu(z))\}\}

= \max\{\{\mu_f(x), \mu_f(z)\}\}

\therefore \mu_f(xyz) \leq \max\{\{\mu_f(x), \mu_f(z)\}\}

Hence \mu_f is a anti-fuzzy bi-ideal of X.

If f[\mu(0)] = 1 then \mu_f(0) = 1.

Thus \mu_f is normal . Assume that
```

 $f(t) = f[\mu(x)] \ge \mu(x)$, for any $x \in X$ which implies $\mu \subseteq \mu_f$

4. Reference:

- [1]. J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass.1969.
- [2]. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65(2007), no.1, 129-134.
- [3]. V.Mahalakshmi, S.Maharasi and S.Jayalakshmi. Bi-ideals of near subtraction semigroup,Indian Advances in Algebra 6(1)(2013)35-48.
- [4]. T.Manikandan,fuzzy bi-ideals of near-rings.J.Fuzzy Math.17(3)(2009) 659-671.
- **[5].** AL.Narayanan and T.Manikandan, $(\in, \in Vq)$ –fuzzy sub nearrings and $(\in, \in Vq)$ fuzzy ideals of near-rings, J.Appl.Math.and computing 18 (2005) 419-430.

- [6]. B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
- [7]. L.A.Zadeh ,Fuzzy sets, information and control 8 (1965) 338-
- [8]. B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.