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Abstract: In this paper we introduce the notation of fuzzy strong bi-ideal of a near-subtraction semigroup and obtain a 

characterization of a strong bi-ideal in terms of a fuzzy strong bi-ideal of a near-subtraction semigroup. We establish 

that every fuzzy left X-subgroup fuzzy left ideal of near- subtraction semigroup is a fuzzy strong bi-ideal of a near-

subtraction semigroup. But the converse is not necessarily true as shown by an example. Further, we discuss the 

properties of fuzzy strong bi-ideal of a near subtraction semigroup. 
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1. Introduction 

B.M. Schein [6] considered systems of the form (X; o ;/), 

where X is a set of functions closed under the composition “” 

of   functions (and hence (X; o) is a function semigroup) and 

the set theoretic subtraction “/” (and hence (X;/) is a 

subtraction algebra in the sense of [2]). Y.B.Jun et al [3] 

introduced the notation of ideals in subtraction algebras and 

discussed the characterization of ideals. In[3], Y.B.Jun and 

H.S.Kim established the ideal generated by a set,and discussed 

related results. The concept of fuzzy set was first initiated by 

Zadeh[7]. Narayanan et al.[5] defined the concept of 

generalized fuzzy ideals of near-rings. Mahalakshmi et al. [3] 

studied the notation of bi-ideals in near subtraction 

semigroups. Manikandan [4] studied fuzzy  fuzzy bi-ideals  in 

near-rings.  

2. Preliminaries 

Definition:2.1 

A nonempty set X together with two binary operation – and.  

is called near subtraction algebra if it satisfying the following: 

(i) x-(y-x) = x 

(ii) x-(x-y) = y-(y-x) 

(iii) (x-y)-z = (x-z)-y 

Definition:2.2 

A nonempty set  X together with two binary operation – and . 

is said to be subtraction semigroup if it satisfying the 

following: 

(i) (x,-) is a subtraction algebra. 

(ii) (x,.) is a semigroup. 

(iii) x(y-z) = xy-xz and 

   (x-y)z=xz-yz  ∀x,y,z X 

Note: 2.3 

1. Let X be a near- subtraction semigroup. Given two 

subsets A and B of X,  

fine another operation 

 

–  

Definition: 2.4 
A near- subtraction semigroup X is called zero-symmetric, if 

x0 = 0, for all x in X. 

Definition: 2.5 

A Subtraction semigroup X is said to be regular if given a

 

Definition: 2.6 

A near- subtraction semigroup X is said to be left permutable 

near-Subtraction semigroup if abc = acb, for all a,b,c in X. 

Definition: 2.7 

A function A from a non-empty set X to the unit interval.[0,1] 

is called a fuzzy subset of X.[14] 

Notation: 2.8 

Let A and B be two fuzzy subsets of a semigroup X. We define 

of A and B, respectively as follows: 

 

), B(x)},  

     

{𝑚𝑖𝑛𝑥=𝑦𝑧
𝑆𝑈𝑃 {𝑎(𝑦), 𝑏(𝑧)} 

                               

                                              

                                0           Otherwise 

 

 

 

It is easily verified that the “product” of fuzzy subsets is 

associative. Throughout this paper, X will denote a near-

subtraction semigroup unless otherwise specified. We denote 

by kI the characteristic function of a subset I of X. The 

characteristic function of X is denoted by X, that is,  X: 

 

Definition: 2.9 

A fuzzy subset A of X is said to be a fuzzy ideal of X if 

1. A is a fuzzy near-subtraction semigroup of X, 

2. A(y+x-  

 

4. A( ai – a(b-  

If A satisfies (1) and (2) and (3) then A is called a fuzzy right 

ideal of X. If A satisfies (1), (2) and (4), then A is called a 

fuzzy left ideal of X. In case of zero-symmetric, If A satisfies 

fuzzy left ideal of X.  

3. Fuzzy Strong Bi-ideals of Near- subtraction 

semigroup 

Definition: 3.1 



 R. Sumitha et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274, Vol. 3, Issue 1, 

 Jan-April 2018, pp.8-11 

© 2018 IJIIR All Rights Reserved          page- 9- 

A fuzzy bi-ideal A of X is called a fuzzy strong bi-ideal of X, 

 

Example: 3.2 

Let X={0,a,b,c} be a near-subtraction semigroup  with two 

 

 

● 0 a b c 

0 0 0 0 0 

a 0 b 0 b 

b 0 0 0 0 

c 0 b 0 b 

 

A(b) = 0.6, 

 

 

-ideal of X 

Note: 3.3 

Every fuzzy strong bi-ideal is fuzzy bi-ideal. But the converse 

is not true. 

 

Example: 3.4 

Let X={0,a,b,c} be a near-subtraction semigroup with two 

 

 

● 0 a b c 

0 0 0 0 0 

a a a a a 

b 0 0 b b 

c a0 a c c 

 

 

A(0) = 0.9, A(a) = 0.4, A(b) = 0.4, 

A(c)=0.7,Then(A

(A A A

0.7,((A *A)(0)=0.9, 

((A *A)(a)=0,((A *A)(b)=0.7, ((A *A)(c)=0, 

X  

X X = 0.7, X

a fuzzy bi-ideal of X. But not a fuzzy strong bi-ideal,since 

X ≰ 𝐴(b) 

Theorem: 3.5 

-ideals of 

X. Then A =⋂ 𝐴𝑖𝑖∈𝐽 -ideal of X, where J 

be an index set. iԐ𝐽  

Proof 

By Theorem 3.4,[4] A is a fuzzy bi-ideal of X. Now for all 

 

⋂ 𝐴𝑖𝑖∈𝑗  

(X X  

                    

(Since Ai is a fuzzy strong bi-ideal of X) 

It follows that,  

(X  

                   =⋂ 𝐴𝑖𝑖∈𝐽 (x) 

                   = A(x) 

Thus X -ideal of X. 

 

Theorem: 3.6 

Let I be a non-empty subset of X and KI be a fuzzy subset of 

X. Then the following 

conditions are equivalent: 

1. I is a strong bi-ideal of X. 

2. KI is a fuzzy strong bi-ideal of X. 

Proof 

First assume that I is a strong bi-ideal of X. Then I is a bi-

ideal of X. By Theorem 3.8[4] , weget KI  is a fuzzy bi-ideal 

of X. 

Let 

 

KI(a)=0. On the other hand assume that(X

Then 

  I I)(a)= 𝑚𝑖𝑛𝑎=𝑝𝑞
𝑠𝑢𝑝

I(q)} 

 

  

 = 𝑚𝑖𝑛𝑎=𝑝𝑞
𝑆𝑈𝑃 {

𝑠𝑢𝑝
𝑝 = 𝑝1𝑝2

{𝑋(𝑝1), 𝑘1(𝑝2}, 𝑘1(𝑞)} 

     (since X  

 

 = 𝑚𝑖𝑎=𝑝𝑞
𝑠𝑢𝑝

𝑛{
𝑠𝑢𝑝

𝑝 = 𝑝1𝑝2
𝑘1(𝑝2}, 𝑘1(𝑞)}=1 

 

And 𝑘1(𝑝2)=1,𝑘1(𝑞) = 1.So p2 , 𝑞  

Then a = pq =p1p2 

X

that  

  (X  fuzzy strong bi-

ideal of X. 

Conversely, assume that KI is a fuzzy strong bi-ideal of X. 

Every  fuzzy strong bi-ideal of X is a fuzzy bi-ideal of X. 

Therefore by Theorem 3.8,[4] I is a fuzzy bi-ideal of X. Let a  

be any element of XI2. Then there exists a,p,q,p1 of X and the 

elements𝑝1, q of I such that a = pq and 

p = 𝑝1 𝑝2. 

I I)(a)= 𝑚𝑖𝑛𝑎=𝑝𝑞
𝑠𝑢𝑝

{X  

 

= 𝑚𝑖𝑛 𝑎=𝑝𝑞
𝑠𝑢𝑝

{ 𝑚𝑖𝑛𝑝=𝑝1 𝑝2

𝑠𝑢𝑝 {𝑋(𝑃1), 𝑘1(𝑝2), 𝑘1(𝑞)} 

 

 = 𝑚𝑖𝑛𝑎=𝑝𝑞
𝑠𝑢𝑝

{ 𝑚𝑖𝑛𝑝=𝑃1𝑃2

𝑠𝑢𝑝
, { 𝑘1(𝑝2)}, 𝑘1(𝑞)} 

 = min {1,1}=1 

(KI) (a) ≥ (X

shows that I is a strong bi-ideal of X. 

Theorem: 3.7 

Every left permutable fuzzy right  

X-subgroup of X is a fuzzy strong bi-ideal of X. 

Proof 

Let A be a left permutable fuzzy right 

X-subgroup of X. 

To prove A is a fuzzy strong bi-ideal of X. 

By Theorem 3.9,[4] we get every fuzzy right X-subgroup of X 

is a fuzzy bi-ideal of X. Choosea, b,c, b1,b2  

 a = bc and b = b1, b2 . Then 

X 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{X  

 

   = 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{ 𝑚𝑖𝑛 𝑏=𝑏1𝑏2

𝑠𝑢𝑝 {𝑋(𝑏1), 𝐴(𝑏2)}, 𝐴(𝑐)} 

 

   = 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

 { min { 𝑏=𝑏1𝑏2

𝑠𝑢𝑝
 A(𝑏2),A(𝑐)} 

 (Since A is a left permutable fuzzy right X-subgroup of X, 

X  

𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

 

  

𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

 

- 0 a b c 

0 0 0 0 0 

a a 0 a 0 

b b b 0 0 

c c b a 0 

- 0 b b c 

0 0 0 0 0 

a a 0 a 0 

b b b 0 0 

c c b a 0 
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Therefore  X -

ideal of X. 

Theorem: 3.8 

Every fuzzy left X-subgroup of X is a fuzzy strong bi-ideal of 

X. 

Proof 

Let A be a fuzzy left X-subgroup of X. 

To prove A is a fuzzy strong bi-ideal of X. 

By Theorem 3.10,[4] we get every fuzzy left X-subgroup of 

X is a fuzzy bi-ideal of X. Choose a, b,c,𝑐1, 𝑐2

= bc and c =𝑐1, 𝑐2 . Then 

X 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

 

 

= 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{X(b), 𝑚𝑖𝑛𝐶= 𝐶1𝐶 2

𝑠𝑢𝑝
{𝐴(𝑐1)}, 𝐴( 𝑐2)} 

 

= 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{1,  𝑚𝑖𝑛{𝐴(𝑐1)}, 𝐴( 𝑐2)}𝐶=𝐶1𝐶 2

𝑠𝑢𝑝
 

 

-subgroup of X, A 

(bc)=A(b(𝑐1𝑐2))=A((b𝑐1)𝑐2 𝑐2)) 

 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{X(c1  

                           = 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

 

                            =A(bc) 

                            = A(a) 

Therefore X -

ideal of X. 

Theorem: 3.9 
Every left permutable fuzzy two-sided  

X-subgroup of X is a fuzzy strong bi-ideal of X. 

Proof 

The proof is straight forward from the above Theorem 3.5 

and Theorem 3.6 

Theorem: 3.10 

Every left permutable fuzzy right ideal of X is a fuzzy strong 

bi-ideal of X. 

Proof 

Let A be a left permutable fuzzy right ideal of X. 

To prove A is a fuzzy strong bi-ideal of X. 

By Theorem 3.12,[4] we get every fuzzy right ideal of X is a 

fuzzy bi-ideal of X. Choose a,b,c,b1,b2

and b=b1,b2 Then 

X 𝑚𝑖𝑛=    𝑎=𝑏𝑐
𝑠𝑢𝑝

 

𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{ 𝑚𝑖𝑛𝑏=𝑏1𝑏2

𝑠𝑢𝑝
{ 𝑋(𝑏1 ), 𝐴(𝑏2 )}, 𝐴(𝑐)} 

= 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{ 𝑚𝑖𝑛𝑏=𝑏1𝑏2

𝑠𝑢𝑝
{ 𝐴(𝑏2 )}, 𝐴(𝑐)} 

(Since A is a left permutable fuzzy right ideal of X,A(bc) 

=A((b1b2)c) =A((b2b1)c)      X(c) 

 

𝑚𝑖𝑛     𝑎=𝑏𝑐
𝑠𝑢𝑝

 

 = 𝑚𝑖𝑛     𝑎=𝑏𝑐
𝑠𝑢𝑝

 

 

Therefore  X -ideal 

of X. 

 

Theorem: 3.11 
Every fuzzy left ideal of X is a fuzzy strong bi-ideal of X. 

Proof 

Let A be a fuzzy left ideal of X. To prove A is a fuzzy strong 

bi-ideal of X. 

By Theorem 3.13[4] we get every fuzzy left ideal of X is a 

fuzzy bi-ideal of X. Choose a,b,c,b1,b2  

a = bc = bi-b(c-i) Then 

𝑚𝑖𝑛     𝑎=𝑏𝑐
𝑠𝑢𝑝

 

 

 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{ 𝑚𝑖𝑛𝑏=𝑏1𝑏2

𝑠𝑢𝑝
{ 𝑋(𝑏1), 𝐴(𝑏2)}, 𝐴(𝑐)} 

 

 = 𝑚𝑖𝑛𝑎=𝑏𝑐
𝑠𝑢𝑝

{ 𝑚𝑖𝑛𝑏=𝑏1𝑏2

𝑠𝑢𝑝
{𝐴(𝑏2)}, 𝐴(𝑐)}   

 

(Since A is a fuzzy left ideal of X, 

 A(bi- b(c-i)) ≥A(c) and X(b2) ≥ A(b2) 

 

        ≤ 𝑚𝑖𝑛     𝑎=𝑏𝑐
𝑠𝑢𝑝

{X(b2), A(bi- b(c-  

      𝑎=𝑏𝑐
𝑠𝑢𝑝

{A(bi- b(c-  

 

 

Therefore X -ideal 

of X. 

Theorem: 3.12 

Every left permutable fuzzy ideal of X is a fuzzy strong bi-

ideal of X. 

Proof: 
The proof is straight forward from 3.8 and Theorem 3.9 the 

Theorem  

Remark: 3.13 

The converse of Theorem 3.7 and Theorem 3.10 are not 

necessarily true as shown by the following example. 

Example: 3.14 

Let X={0,a,b,c} be the near Subtraction semigroups  with two 

 

 

A (0) = 0.75, A(a) = 0.2, A(b) = 0.3, 

A(c) =0.3.Then      (A  

(A A  

(A X  

X 0, X =0,X

is a fuzzy strong bi-ideal of X. Since A (a) = A (bc)  ≱A(b)and  

A (a) = A (bc) ≱ A(c), A is not a fuzzy two-sided X-subgroup 

of X. 

Since A(a) =A(bc)≥ min {A(b),A(c)}, A is not a fuzzy sub 

near-ring of X and so A is not a fuzzy ideal of X. 

- 0 a b c   0 a b c 

0 0 0 0 0  0 0 0 0 0 

b a 0 a 0  a 0 0 0 0 

b b b 0 a  b 0 0 0 a 

c c b a 0  c 00 0 0 a 

 

Theorem: 3.15 

Let A be any fuzzy strong bi-ideal of a near-Subtraction 

semigroups  X. Then  

 

Proof 

Assume that A is a fuzzy strong bi-ideal of X. Then X

 

Let a, x and y be any element of X. Then 

X ) (axy) 

𝑚𝑖𝑛                     =     𝑎𝑥𝑦=𝑝𝑞
𝑠𝑢𝑝

 

 

𝑚𝑖𝑛 
=  { 𝑚𝑖𝑛𝑎𝑥=𝑧1𝑧2

𝑠𝑢𝑝
{ 𝑋(𝑧1), 𝐴(𝑧2)}, 𝐴(𝑦)} 

 

 𝑚𝑖𝑛 
 { 𝑚𝑖𝑛 

 { 𝑋(𝑎), 𝐴(𝑥)}, 𝐴(𝑦)} 

 

         𝑚𝑖𝑛 
 {𝑚𝑖𝑛 

 { 1, 𝐴(𝑥)}, 𝐴(𝑦)} 
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𝑚𝑖𝑛 
 { 𝐴(𝑥), 𝐴(𝑦) } 
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