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Abstract: In this paper we introduce the notation of fuzzy strong bi-ideal of a near-subtraction semigroup and obtain a
characterization of a strong bi-ideal in terms of a fuzzy strong bi-ideal of a near-subtraction semigroup. We establish
that every fuzzy left X-subgroup fuzzy left ideal of near- subtraction semigroup is a fuzzy strong bi-ideal of a near-
subtraction semigroup. But the converse is not necessarily true as shown by an example. Further, we discuss the
properties of fuzzy strong bi-ideal of a near subtraction semigroup.
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1. Introduction

B.M. Schein [6] considered systems of the form (X; 0 ;/),
where X is a set of functions closed under the composition “0”
of functions (and hence (X; o) is a function semigroup) and
the set theoretic subtraction “/” (and hence (X;/) is a
subtraction algebra in the sense of [2]). Y.Bdun et al [3]
introduced the notation of ideals in subtraction algebras and
discussed the characterization of ideals. An[3],.Y.B.Jun and
H.S.Kim established the ideal generatedby a set,and discussed
related results. The concept of fuzzyset was first initiated by
Zadeh[7]. Narayanan et al.[5]< defined the" concept of
generalized fuzzy ideals of near-rings. Mahalakshmi et al. [3]
studied the notation of <bi-ideals in near subtraction
semigroups. Manikandan«[4] studied fuzzy fuzzy bi-ideals in
near-rings.

2. Preliminaries

Definition:2.4
A nonempty set. X together with two binary operation — and.
is called‘near subtraction algebra if it satisfying the following:

(i) X-(y=X) = X

(ii) X-(X-y) = Y=(y-x)

(ii)  (x-y)-z=(x-2)-y
Definition:2.2
A nonempty set X together with.two binary operation —and .
is said to be subtraction semigroup if it satisfying the
following:

0] (x,-) is a subtraction algebra.

(i) (x,.) is a semigroup.
(iii) X(y-z) = xy-xz and
(X-y)z=xz-yz Vx,y,z[1X
Note: 2.3

1. Let X be a near- subtraction semigroup. Given two
subsets A and B of X,
A*B = {ab/allA, b[1B}. Also we define another operation
“r
AlB = {a (b+i) —ab /a,b[1A, i['B}.
Definition: 2.4
A near- subtraction semigroup X is called zero-symmetric, if
x0 =0, for all x in X.
Definition: 2.5
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A‘Subtraction semigroupX is said to be regular if givena’ X,
there is x[1[ /X such that axa =a.

Definition: 2.6
A near- subtraction'semigroup X is said to be left permutable
near-Subtraction semigroup if abc =.acb, for all a,b,c in X.
Definition: 2.7
A function A from a non-empty set X to the unit interval.[0,1]
is called a fuzzy subset of X.[14]
Notation: 2.8
Let A and B be two fuzzy subsets of a semigroup X. We define
the relation 1l lbetween A and B, the intersection and product
of A and B, respectively as follows:

1. A [11B if A(x) [1[1B(x), for all x[ X,
2. (A[1B) (x) = min{A(x), B(X)},

For all x[1X

3.(AB) ()= (25 {(min{a(y), b(2)}

if x=yz,for all y,z[ | X

0 Otherwise

It is easily verified that the “product” of fuzzy subsets is
associative. Throughout this paper, X will denote a near-
subtraction semigroup unless otherwise specified. We denote
by ki the characteristic function of a subset | of X. The
characteristic function of X is denoted by X, that is, X:
X[1[0,1] mapping every element of X to 1.

Definition: 2.9

A fuzzy subset A of X is said to be a fuzzy ideal of X if

1. A'is a fuzzy near-subtraction semigroup of X,

2. A(y+x-y) = A(x), for all x, y[1X,

3. A(xy) A(x), for all x,y[1X,

4. A(ai —a(b-1) A(i), for all a,b, i, 1X.

If A satisfies (1) and (2) and (3) then A is called a fuzzy right
ideal of X. If A satisfies (1), (2) and (4), then A is called a
fuzzy left ideal of X. In case of zero-symmetric, If A satisfies
(1),(2) and A(xy) [I[IA(y), for all x, yL'X and A is called a
fuzzy left ideal of X.

3. Fuzzy Strong Bi-ideals of Near- subtraction
semigroup

Definition: 3.1
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A fuzzy bi-ideal A of X is called a fuzzy strong bi-ideal of X,
if XUALDA LA

Example: 3.2

Let X={0,a,b,c} be a near-subtraction semigroup with two
binary operations ,,[ 1 and ,,@* is defined as follows.

o|o|o|o|o
o|o|o|o|T
T(O|T|O|0

DOl | O|T

O |T|2|Of!
O |T| (0|0

o|IT|O|0O|D
[ellelle]lie] o]
O|T|2(O|le
T|O|T|O|®

Define a fuzzy subset A: X
A(b) = 0.6,

A(c) = 0.3.ThenX A JA(0)= 0.3,

X ATIA(a) =0 0, X[ TATIA (b) =0,

XTA[IA (¢) =0, and so A is a fuzzy strong bi-ideal of X
Note: 3.3

Every fuzzy strong bi-ideal is fuzzy bi-ideal. But the converse
is not true.

[0,1] by A(0) = 0.8, A(a) = 0.3,

Example: 3.4
Let X={0,a,b,c} be a near-subtraction semigroup with two

binary operations ,,[ 1 and ,," 1 is defined as follows..
- |0|b |bjc e |0 Ja|b |c
0 |]0OJ0]O]O 0 0 /0|0 |0
a |a|0]a]o0 a a |ajada
b |[b|b|0]|O b 0 [0jDb |b
c |c|bla]o0 C a0 |a|c |c

Define a fuzzy subset A: X[1[1[0,1] by
A(0)=0.9, A(a) = 0.4, A(b) = 0.4,
A(c)=0.7,Then(AL1X[JA)(©0)=0.9,
(ATTXTTA)(@)=0.7,(A1XT1A)(b)=0.4,
0.7,((AL'X)*A)(0)=0.9,
(ATX)*A)(2)=0,((ATX)*A)(b)=0.7,
XUATA(0)=0:3,
X IATIA(a)=0,X A IA(b) = 0.7, X[ IA TA(c)=0. Then A is
a fuzzy bi-ideal of X. But not a fuzzy strong bi-ideal,since
XUAFA (b)< A(b)
Theorem: 3.5
Let {Ai [1Jil]J} be any family of fuzzy strong bi-ideals of
X. Then A =N;¢; A; Vis a fuzzy strong bi-ideal of X, where J
be an index set. i€J
Proof
By Theorem 3.4,[4] A is a fuzzy bi-ideal of X. Now for all
x[JX, since
A =[1N;ej A;[ 1 TITAI for every i 1], we have
(XTIATIA) (x) < (XAITAI) (%)

< Ai(x) for every il l]
(Since Ai is a fuzzy strong bi-ideal of X)
It follows that,
(X[TATIA) (x) < inf{ Ai(x) : i1]}

=Nies 4i(X)

=A(X)
Thus X[ TATTA

(AUXA)C) =

((ATX)*A)(c)=0,

A. So A is a fuzzy strong bi-ideal of X.

Theorem: 3.6

Let I be a non-empty subset of X and Kl be a fuzzy subset of
X. Then the following

conditions are equivalent:
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1. I is a strong bi-ideal of X.

2. Kl is a fuzzy strong bi-ideal of X.

Proof

First assume that | is a strong bi-ideal of X. Then | is a bi-
ideal of X. By Theorem 3.8[4] , weget KI is a fuzzy bi-ideal
of X.

Let a be any element of X. If al I then KI(a)=1>
(XIKITIKI ) (a). Ifal /T then

KI(@)=0. On the other hand assume that(X JKIKI )(a)=1
Then

XUKIDK) (@)= 22Pmin {X 111, 1p).Ki(q)}

a=pq

_ . sup
—ail{f;mm{p = Plpz{X(pl)’ k1(p23 k1(q)}
(since X(x) =1, 0xX)

_ sup. Ay SUP B
_a=pqmm{p = plpzkl (P2} k1 () }=1

And k,; (p2)=1,k;(q) = 1.S0p2,q 1.

Then a = pg<=pip> q OCXIIT TJ0OI  which
contradictsal | 1. ThusKI (a)=0=(XKI[/KI)(a). This shows
that

(XTIKITIKI) “IKI. Therefore/KI is a fuzzy strong bi-
ideal of X.

Conversely, assume that Kl is a fuzzy strong bi-ideal of X.
Every fuzzy strong bi-ideal of X is a fuzzy bi-ideal of X.
Therefore by. Theorem 3.8,[4] | is a fuzzy bi-ideal of X. Let a
be any element.of X12+Then there exists a,p,q,p: of X and the
elementspy, g of | such that a = pq and

P=p10D2

XOKOK ) @)=, 25 Pmin{X

a=pq olp),lnlq)}

L sup

= a=pqmin {p=pf1#2)min{x(P1)' k1 (p2), k1(q)}
4 aiZ’émin{Fﬁgmin; { k1(p2)} k1 (@)}

=min {1,1}=1

(KI) (a) > (X[IKILIKI) (a) = 1. Thus al 1.So XII [J[11. This
shows that | is a strong bi-ideal of X.

Theorem: 3.7

Every left permutable fuzzy right

X-subgroup of X is a fuzzy strong bi-ideal of X.

Proof

Let A be a left permutable fuzzy right

X-subgroup of X.

To prove A is a fuzzy strong bi-ideal of X.

By Theorem 3.9,[4] we get every fuzzy right X-subgroup of X
is a fuzzy bi-ideal of X. Choosea, b,c, b1,bo[1X such that
a=bcandb=by, by. Then

XUAUA (@) =, 5 Pmin{X:[1[b c

Semin{ ,_ e min{X (by), A(b2)}, A(©)}

“a=bc

= Zpemin {,_,*Pmin{ A(b,),A(c)}
(Since A is a left permutable fuzzy right X-subgroup of X,
A(bc) = A((b1b2)c) = A((b2b1) ¢)[JA(b2)) and X(c) [IA(c)
Oguobobooobodoooooooogoooooooog

sup__ . e
,,,,,,,, azpemin{Jbc]
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Therefore XTTATIA (1A, Hence A is a fuzzy strong bi-
ideal of X.

Theorem: 3.8

Every fuzzy left X-subgroup of X is a fuzzy strong bi-ideal of
X.

Proof

Let A be a fuzzy left X-subgroup of X.

To prove A is a fuzzy strong bi-ideal of X.

By Theorem 3.10,[4] we get every fuzzy left X-subgroup of
X is a fuzzy bi-ideal of X. Choose a, b,c,c;, ¢, [1X such that a
=bcand ¢ =c, ¢, . Then

XTATA (@) =, SPmin{X b) I JATTA ¢l

—a=bc

= 2P min{X(b).c o ermin{A(c,)}, A( c2))

~ a=bc

=azpemin{l, coc,cymin{A(c)} A(cz)}
(Since Alis a fuzzy left X-subgroup of X, A
(be)=A(b(c1¢2))=A((ber)cz) L A(c,))

Oooon SPmindX(cy), be

a=bc
=, S Pmin{1,01[bell ]
=A(bc)
=A@?)

Therefore XTTAIA [10A. Hence A is a fuzzy strong bi-
ideal of X.

Theorem: 3.9

Every left permutable fuzzy two-sided

X-subgroup of X is a fuzzy strong bi-ideal of X.

Proof

The proof is straight forward from the above Theorem 3.5
and Theorem 3.6

Theorem: 3.10

Every left permutable fuzzy right ideal of X is a fuzzy strong
bi-ideal of X.

Proof

Let A be a left permutable fuzzy right ideal of X:

To prove A'is afuzzy strong bi-ideal of X.

By Theorem 3.12,[4] we get every fuzzy right ideal of X is a
fuzzy'bi-ideal of X. Choose a,b,c,b1,b,[1X such that a = be
and b=b4,b, Then

XTATA (@)_ 2 Pmin{XiA(b), el

LU Zpeming ,_yy,min{ X(by ), A(b; )}, A()}

a=bc
— Ssup

= Zpemin{,_ pomin{ A(by )}, A(c)}
(Since A is a left permutable fuzzy right ideal of X,A(bc)
=A((b1b2)c) =A((b2bl)c) A(b2(bl)c) JA(b2))and X(c)

[1A(c)

O aopbmin{A(bc),X lc

= S Pmin{A(bc),11

RIRIRIRINIRY.NE))

Therefore X[JAIA [1[1A. Hence A is a fuzzy strong bi-ideal
of X.

Theorem: 3.11

Every fuzzy left ideal of X is a fuzzy strong bi-ideal of X.
Proof

Let A be a fuzzy left ideal of X. To prove A is a fuzzy strong
bi-ideal of X.

By Theorem 3.13[4] we get every fuzzy left ideal of X is a
fuzzy bi-ideal of X. Choose a,b,c,b1,b2[7X such that
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XACA (a)=

a = bc = bi-b(c-i) Then
YPmin{ X IA(b) | Alcl 1]

a=bc

P ming,_ S min{ X (by), A(b,)}, A©)}

—a=bc

aspemin{,_p pomin{A(b;)}, A(c)}
(Since A is a fuzzy left ideal of X,
A(bi- b(c-1)) >A(c) and X(b2) > A(by)

< ZPmin{X(b2), A(bi- b(c-i))
aZpe {A(bI- b(c-1)
OO0 OooUD U Hbe)
~dO0a0
Therefore X[ ACJA T171A. Hence A is a fuzzy strong bi-ideal
of X.
Theorem:3.12
Every left permutable fuzzy ideal of X is a fuzzy strong bi-
ideal’of X.
Proof:
The proof is straight forward from 3.8 and Theorem 3.9 the
Theorem
Remark: 3.13
The converse of Theorem 3.7 and” Theorem 3.10 are not
necessarily true as shown by the following example.

Example: 3.14
Let X={0;a,b,c} be the near Subtraction semigroups with two
binary operations ,,[ I and ,,[1* is defined as follows.

Define a fuzzy subsetA: X1 11[0,1] by

A (0)=0.75, A(a) = 0.2, A(b) = 0.3,

A(c) =0.3.Then = (ALX[1A)(0)=0.3,

(ALXIIA) (8) =0, (ALXA)Db) =0,

(ALUXTA)(c)=0, X[IALIA (0)=0.3,

X[ JATIA (a) =0, X[UALIA (b)=0,X[JATJA (¢) =0, and so A
is a fuzzy strong bi-ideal of X. Since A (a) = A (bc) £A(b)and
A (a) = A (bc) 2 A(c), A is not a fuzzy two-sided X-subgroup
of X.

Since A(a) =A(bc)> min {A(b),A(c)}, A is not a fuzzy sub
near-ring of X and so A is not a fuzzy ideal of X.

-|0]la|b]|c [0 alb |c
0|0|0|0]0O 0(0 0/0 |0
bla|0O|a |0 alo 0|0 |O
b|b|b|0]|a b|0 0|0 |a
clc|bfalo cloo [o]o0 |a

Theorem: 3.15
Let A be any fuzzy strong bi-ideal of a near-Subtraction
semigroups X. Then
Aaxy) [ min{ A(x), A(y)}
Proof
Assume that A is a fuzzy strong bi-ideal of X. Then X[TATTA
A.

Let a, x and y be any element of X. Then
A(axy) OT(XTIATIA) (axy)

— axy—pgmin{ XTA(p),A(Q)]

= min{ g tmin{ X (z,), A(z,)}, A()}

a, x, ylX.

= min{min{ X(a), A(x)},A(y)}
= Umin{min{1,A(x)}, A(y)}
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= min{ A(x),A(y) }
UThis shows that
A(axy) [min{ A(x), A(y)} Ua, x,y LIX.
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