Fuzzy strong bi-ideal of near subtraction semigroups

R. Sumitha¹, P. Annamalai selvi² and S.Jayalakshmi³

¹Research Scholar, Department of Mathematics, Sri Parasakthi College for Women, Courtallam. India.
²Research Scholar, Department of Mathematics, Sri Parasakthi College for Women, Courtallam. India.
³Associate Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam, India.

Abstract: In this paper we introduce the notation of fuzzy strong bi-ideal of a near-subtraction semigroup and obtain a characterization of a strong bi-ideal in terms of a fuzzy strong bi-ideal of a near-subtraction semigroup. We establish that every fuzzy left X-subgroup fuzzy left ideal of near-subtraction semigroup is a fuzzy strong bi-ideal of a near-subtraction semigroup. But the converse is not necessarily true as shown by an example. Further, we discuss the properties of fuzzy strong bi-ideal of a near subtraction semigroup.

Keywords: Fuzzy two sided X-subalgebra, fuzzy subnear-subtraction semigroup, fuzzy bi-ideal, fuzzy strong bi-ideal.

1. Introduction

B.M. Schein [6] considered systems of the form (X; o;/), where X is a set of functions closed under the composition "o" of functions (and hence (X; o) is a function semigroup) and the set theoretic subtraction "/" (and hence (X;/) is a subtraction algebra in the sense of [2]). Y.B.Jun et al [3] introduced the notation of ideals in subtraction algebras and discussed the characterization of ideals. In[3], Y.B.Jun and H.S.Kim established the ideal generated by a set, and discussed related results. The concept of fuzzy set was first initiated by Zadeh[7]. Narayanan et al.[5] defined the concept of generalized fuzzy ideals of near-rings. Mahalakshmi et al. [3] studied the notation of bi-ideals in near subtraction semigroups. Manikandan [4] studied fuzzy fuzzy bi-ideals in near-rings.

2. Preliminaries

Definition:2.1

A nonempty set X together with two binary operation – and. is called near subtraction algebra if it satisfying the following:

- (i) x-(y-x)=x
- (ii) x-(x-y) = y-(y-x)
- (iii) (x-y)-z = (x-z)-y

Definition:2.2

A nonempty set $\, X \, together \, with \, two \, binary \, operation - and \, . \,$ is said to be subtraction semigroup if it satisfying the following:

- (i) (x,-) is a subtraction algebra.
- (ii) (x,.) is a semigroup.
- (iii) x(y-z) = xy-xz and

 $(x-y)z=xz-yz \ \forall x,y,z \square X$

Note: 2.3

1. Let X be a near- subtraction semigroup. Given two subsets A and B of X,

 $A*B = \{ab/a \square A, \, b \square B\}.$ Also we define another operation " \square "

 $A \square B = \{a (b+i) - ab /a, b \square A, i \square B\}.$

Definition: 2.4

A near- subtraction semigroup X is called zero-symmetric, if x0 = 0, for all x in X.

Definition: 2.5

A Subtraction semigroup X is said to be **regular** if given $a \square X$, there is $x \square \square X$ such that axa = a.

Definition: 2.6

A near-subtraction semigroup X is said to be **left permutable** near-Subtraction semigroup if abc = acb, for all a,b,c in X.

Definition: 2.7

A function A from a non-empty set X to the **unit interval**.[0,1] is called a fuzzy subset of X,[14]

Notation: 2.8

Let A and B be two fuzzy subsets of a semigroup X. We define the relation \Box between A and B, the intersection and product of A and B, respectively as follows:

- 1. A $\Box \Box B$ if $A(x) \Box \Box B(x)$, for all $x \Box X$,
- 2. $(A \square B)(x) = \min\{A(x), B(x)\},\$

For all $x \square X$

3. (A B) (x) =
$$\begin{cases} \sup_{x=yz} \{ \min\{a(y), b(z)\} \\ \text{if } x=yz, \text{for all } y, z \square X \end{cases}$$
0 Otherwise

It is easily verified that the "product" of fuzzy subsets is associative. Throughout this paper, X will denote a near-subtraction semigroup unless otherwise specified. We denote by k_I the characteristic function of a subset I of X. The characteristic function of X is denoted by \mathbf{X} , that is, \mathbf{X} : $X\square[0,1]$ mapping every element of X to 1.

Definition: 2.9

A fuzzy subset A of X is said to be a fuzzy ideal of X if

- 1. A is a fuzzy near-subtraction semigroup of X,
- 2. A(y+x-y) = A(x), for all $x, y \square X$,
- 3. $A(xy) \square \square A(x)$, for all $x,y \square X$,
- 4. A($ai a(b-i) \square \square A(i)$, for all $a,b,i,\square X$.

If A satisfies (1) and (2) and (3) then A is called a fuzzy right ideal of X. If A satisfies (1), (2) and (4), then A is called a fuzzy left ideal of X. In case of zero-symmetric, If A satisfies (1),(2) and $A(xy) \Box \Box A(y)$, for all x, $y\Box X$ and A is called a fuzzy left ideal of X.

3. Fuzzy Strong Bi-ideals of Near- subtraction semigroup

Definition: 3.1

R. Sumitha et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274, Vol. 3, Issue 1, Jan-April 2018, pp.8-11

A fuzzy bi-ideal A of X is called a fuzzy strong bi-ideal of X, 1. I is a strong bi-ideal of X. if $X \square A \square A \square \square A$

Example: 3.2

Let $X=\{0,a,b,c\}$ be a near-subtraction semigroup with two binary operations " \square " and " \bullet " is defined as follows.

ı	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

•	0	a	b	С
0	0	0	0	0
a	0	b	0	b
b	0	0	0	0
c	0	b	0	b

Define a fuzzy subset A: $X \square [0,1]$ by A(0) = 0.8, A(a) = 0.3, A(b) = 0.6,

A(c) = 0.3. Then $X \square A \square A(0) = 0.3$,

 $X \square A \square A(a) = 0$ 0, $X \square A \square A(b) = 0$,

 $X \square A \square A$ (c) =0, and so A is a fuzzy strong bi-ideal of X

Every fuzzy strong bi-ideal is fuzzy bi-ideal. But the converse is not true.

Example: 3.4

Let $X=\{0,a,b,c\}$ be a near-subtraction semigroup with two binary operations "
—" and "
—" is defined as follows...

-	0	b	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
С	С	b	a	0

•	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	0	b	b
С	a0	a	c	c

Define a fuzzy subset A: $X \square \square [0,1]$ by

A(0) = 0.9, A(a) = 0.4, A(b) = 0.4,

 $A(c)=0.7,Then(A \Box X \Box A)(0)=0.9,$

 $(\mathbf{A} \square \mathbf{X} \square \mathbf{A})(\mathbf{a}) = 0.7, (\mathbf{A} \square \mathbf{X} \square \mathbf{A})(\mathbf{b}) = 0.4,$ $(\mathbf{A} \square \mathbf{X} \square \mathbf{A})(\mathbf{c})$

 $0.7,((\mathbf{A} \square X)*A)(0)=0.9,$ $((\mathbf{A} \square X) * A)(a) = 0.((\mathbf{A} \square X) * A)(b) = 0.7,$ $((\mathbf{A} \square \mathbf{X}) * \mathbf{A})(\mathbf{c}) = 0,$

 $X \square A \square A(0) = 0.3$

 $X \square A \square A(a) = 0, X \square A \square A(b) = 0.7, X \square A \square A(c) = 0$. Then A is a fuzzy bi-ideal of X. But not a fuzzy strong bi-ideal, since

 $X \square A \square A (b) \not\leq A(b)$

Theorem: 3.5

Let $\{Ai \square \square i \square J\}$ be any family of fuzzy strong bi-ideals of X. Then $A = \bigcap_{i \in I} A_i$ is a fuzzy strong bi-ideal of X, where J be an index set. iE/

Proof

By Theorem 3.4,[4] A is a fuzzy bi-ideal of X. Now for all $x \square X$, since

 $A = \Box \bigcap_{i \in I} A_i \Box \Box \Box Ai$ for every $i \Box J$, we have

$$(\mathbf{X} \square \mathbf{A} \square \mathbf{A}) (\mathbf{x}) \leq (\mathbf{X} \square \mathbf{A} \mathbf{i} \square \mathbf{A} \mathbf{i}) (\mathbf{x})$$

 \leq Ai(x) for every i \square J

(Since Ai is a fuzzy strong bi-ideal of X)

It follows that,

 $(\mathbf{X} \square \mathbf{A} \square \mathbf{A}) (\mathbf{x}) \leq \inf \{ \mathbf{A} \mathbf{i} (\mathbf{x}) : \mathbf{i} \square \mathbf{J} \}$

 $=\bigcap_{i\in J}A_i(\mathbf{x})$

= A(x)

Thus $X \square A \square A \square \square A$. So A is a fuzzy strong bi-ideal of X.

Theorem: 3.6

Let I be a non-empty subset of X and KI be a fuzzy subset of X. Then the following conditions are equivalent:

2. KI is a fuzzy strong bi-ideal of X.

First assume that I is a strong bi-ideal of X. Then I is a biideal of X. By Theorem 3.8[4], we get KI is a fuzzy bi-ideal

Let a be any element of X. If $a \square I$ then $KI(a) = 1 \ge$

 $(X \square KI \square KI)$ (a). If a $\square I$ then

KI(a)=0. On the other hand assume that $(X \square KI \square KI)(a)=1$

$$(X \square K_{I} \square K_{I})(a) = \underset{a = pq}{\textit{sup}} min\{X \square \square_{\square} \square p), K_{I}(q)\}$$

$$= \underset{a=pq}{\sup} \min \{ \sup_{p = p_1 p_2} \{X(p_1), k_1(p_2), k_1(q) \}$$
(since $\mathbf{X}(\mathbf{x}) = 1, \square \mathbf{x} \square \mathbf{X}$)

$$= \sup_{a=pq} \min \{ \sup_{p=p_1p_2} k_1(p_2), k_1(q) \} = 1$$

And $k_1(p_2)=1, k_1(q)=1$. So p_2 , $q \square \square$.

Then a = pq $=p_1p_2$ q $\square \square XII$ □ □ I which contradictsa \Box I. Thus KI (a)=0=(X \Box KI \Box KI)(a). This shows

(X KI KI) DDDKI. Therefore KI is a fuzzy strong biideal of X.

Conversely, assume that KI is a fuzzy strong bi-ideal of X. Every fuzzy strong bi-ideal of X is a fuzzy bi-ideal of X. Therefore by Theorem 3.8,[4] I is a fuzzy bi-ideal of X. Let a be any element of XI². Then there exists a,p,q,p₁ of X and the elements p_1 , q of I such that a = pq and

$$p=p_1 p_2.$$

$$(X \square K_{I} \square K_{I})(a) = \sup_{a=pq} \min\{X_{\square} \square_{\square} \square p\}, \square_{\square} \square q\}$$

$$= \sup_{a=pq}^{sup} \min \{ \sup_{p=p_1, p_2}^{sup} \min \{ X(P_1), k_1(p_2), k_1(q) \}$$

$$= \underset{a=pq}{\sup} \min \{ \underset{p=P_1P_2}{\sup} \min, \{ k_1(p_2) \}, k_1(q) \}$$

 $= \min \{1,1\}=1$

(KI) (a) \geq (X \square KI \square \square KI) (a) = 1. Thus a \square I. So XII \square \square I. This shows that I is a strong bi-ideal of X.

Theorem: 3.7

Every left permutable fuzzy right

X-subgroup of X is a fuzzy strong bi-ideal of X.

Proof

Let A be a left permutable fuzzy right

X-subgroup of X.

To prove A is a fuzzy strong bi-ideal of X.

By Theorem 3.9,[4] we get every fuzzy right X-subgroup of X is a fuzzy bi-ideal of X. Choosea, b,c, $b_1,b_2\Box X$ such that a = bc and $b = b_1$, b_2 . Then

$$\mathbf{X} = \mathbf{b}\mathbf{c}$$
 and $\mathbf{b} = \mathbf{b}_1^{\mathsf{s}}$, $\mathbf{b}_2^{\mathsf{s}}$. Then
$$\mathbf{X} = \mathbf{A} = \mathbf{A} = \mathbf{a} = \mathbf{b}\mathbf{c}$$

$$\mathbf{X} = \mathbf{b} = \mathbf{b}$$

$$= \sup_{a=bc}^{sup} min\{\sup_{b=b_1b_2}^{sup} min\{X(b_1),A(b_2)\},A(c)\}$$

$$= \sup_{a=bc}^{sup} \min \left\{ \sup_{b=b_1b_2}^{sup} \min \left\{ A(b_2), A(c) \right\} \right\}$$

(Since A is a left permutable fuzzy right X-subgroup of X, $A(bc) = A((b1b2)c) = A((b2b1)c) \square A(b2)$ and $X(c) \square A(c)$

 $\underset{a=bc}{sup}min\{\Box\Box bc\Box\Box\Box\Box\Box$

R. Sumitha et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274, Vol. 3, Issue 1, Jan-April 2018, pp.8-11

a = bc = bi-b(c-i) Then Therefore $X \square A \square A \square \square A$. Hence A is a fuzzy strong biideal of X. Theorem: 3.8 Every fuzzy left X-subgroup of X is a fuzzy strong bi-ideal of X. **Proof** Let A be a fuzzy left X-subgroup of X. To prove A is a fuzzy strong bi-ideal of X. By Theorem 3.10,[4] we get every fuzzy left X-subgroup of X is a fuzzy bi-ideal of X. Choose a, b,c, c_1 , $c_2 \square X$ such that a = bc and $c = c_1, c_2$. Then $X \square A \square A (a) = \square_{a=bc}^{sup} min\{X \square b\} \square \square A \square A \square c \square \square$ $= \underset{a=bc}{^{sup}} min\{X(b),_{C=C_1C_2} \overset{sup}{min}\{A(c_1)\},A(c_2)\}$ $=_{a=bc}^{sup}min\{1, \sum_{c=c_1c_2}^{sup}min\{A(c_1)\}, A(c_2)\}$ (Since $A \square$ is a fuzzy left X-subgroup of X, A $(bc)=A(b(c_1c_2))=A((bc_1)c_2)\Box A(c_2)$ $\square \square \square \square \square \sup_{a=bc} sup_{a=bc} min\{X(c_1), \square \square bc \square \square\}$ $= \sup_{a=bc} \min\{1, \Box bc \Box \Box\}$

= A(a)Therefore $X \square A \square A$ $\square \square A$. Hence A is a fuzzy strong biideal of X.

Theorem: 3.9

Every left permutable fuzzy two-sided

=A(bc)

X-subgroup of X is a fuzzy strong bi-ideal of X.

The proof is straight forward from the above Theorem 3.5 and Theorem 3.6

Theorem: 3.10

Every left permutable fuzzy right ideal of X is a fuzzy strong bi-ideal of X.

Proof

Let A be a left permutable fuzzy right ideal of X.

To prove A is a fuzzy strong bi-ideal of X.

By Theorem 3.12,[4] we get every fuzzy right ideal of X is a fuzzy bi-ideal of X. Choose a,b,c,b₁,b₂ \square X such that a = bc and $b=b_1,b_2$ Then

and $b=b_1,b_2$ Then $\mathbf{X} \square \mathbf{A} \square \mathbf{A} \text{ (a)} = \underset{a=bc}{\overset{sup}{min}} \{\mathbf{X} \square \mathbf{A}(\mathbf{b}), \square \square \square \underset{a=bc}{\square} \underset{a=bc}{\overset{sup}{min}} \{\underset{b=b_1b_2}{\overset{sup}{min}} \{X(b_1), A(b_2)\}, A(c)\}$ $= \sup_{a=bc} \min\{\sup_{b=b_1b_2} \min\{A(b_2)\}, A(c)\}\$ (Since A is a left permutable fuzzy right ideal of X,A(bc) =A((b1b2)c) = A((b2b1)c) $A(b2(b1)c) \square A(b2)$) and X(c) $\Box A(c)$

 $\begin{array}{c}
sup\\ a=bc\\ sup\\ min \{A(bc), X \square c \square \square\\ sup\\ min \{A(bc), X \square c \square\\ sup\\$ $\underset{a=bc}{sup}min\{A(bc),1\Box$ $\Box\Box\Box\Box\Box\BoxA(a)$

Therefore $X \square A \square A \square \square A$. Hence A is a fuzzy strong bi-ideal of X.

Theorem: 3.11

Every fuzzy left ideal of X is a fuzzy strong bi-ideal of X.

Proof

Let A be a fuzzy left ideal of X. To prove A is a fuzzy strong bi-ideal of X.

By Theorem 3.13[4] we get every fuzzy left ideal of X is a fuzzy bi-ideal of X. Choose a,b,c,b₁,b₂ \square X such that

 $X \square A \square A (a) = \underset{a=bc}{sup} min\{ X \square A(b) \square \square A \square c \square \square \}$

 $= \Box_{a=bc}^{sup} min\{ \sup_{b=b_1b_2} min\{X(b_1), A(b_2)\}, A(c) \}$

 $= \sup_{a=bc}^{sup} min\{\sup_{b=b_1b_2}^{sup} min\{A(b_2)\}, A(c)\}$

(Since A is a fuzzy left ideal of X, $A(bi-b(c-i)) \ge A(c)$ and $X(b_2) \ge A(b_2)$

 $\underset{a=bc}{sup}min\{X(b_2), A(bi-b(c-i))\Box$

Therefore $X \square A \square A$. Hence A is a fuzzy strong bi-ideal of X.

Theorem: 3.12

Every left permutable fuzzy ideal of X is a fuzzy strong biideal of X.

Proof:

The proof is straight forward from 3.8 and Theorem 3.9 the Theorem

Remark: 3.13

The converse of Theorem 3.7 and Theorem 3.10 are not necessarily true as shown by the following example.

Example: 3.14

Let $X = \{0,a,b,c\}$ be the near Subtraction semigroups with two binary operations " \square " and " \square " is defined as follows.

Define a fuzzy subset A: $X \square \square [0,1]$ by

A(0) = 0.75, A(a) = 0.2, A(b) = 0.3,A(c) = 0.3.Then $(A \square X \square A)(0) = 0.3$,

 $(\mathbf{A} \square \mathbf{X} \square \mathbf{A})$ (a) =0, $(\mathbf{A} \square \mathbf{X} \square \mathbf{A})$ (b) = 0,

 $(\mathbf{A} \square \mathbf{X} \square \mathbf{A}) (\mathbf{c}) = 0, \mathbf{X} \square \mathbf{A} \square \mathbf{A} (0) = 0.3,$

 $X \square A \square A$ (a) = 0, $X \square A \square A$ (b)=0, $X \square A \square A$ (c) = 0, and so A is a fuzzy strong bi-ideal of X. Since $A(a) = A(bc) \ge A(b)$ and $A(a) = A(bc) \ge A(c)$, A is not a fuzzy two-sided X-subgroup of X.

Since $A(a) = A(bc) \ge m \ln \{A(b), A(c)\}$, A is not a fuzzy sub near-ring of X and so A is not a fuzzy ideal of X.

-	0	a	b	c		0	a	b	c
0	0	0	0	0	0	0	0	0	0
b	a	0	a	0	a	0	0	0	0
b	b	b	0	a	b	0	0	0	a
c	c	b	a	0	c	00	0	0	a

Theorem: 3.15

Let A be any fuzzy strong bi-ideal of a near-Subtraction semigroups X. Then

 $A(axy) \square \min\{ A(x), A(y) \} \square a, x, y \square X.$

Proof

Assume that A is a fuzzy strong bi-ideal of X. Then $X \square A \square A$ $\square \square A$.

Let a, x and y be any element of X. Then

 $A(axy) \square \square (\mathbf{X} \square A \square A) (axy)$

 $= \underset{axy=pq}{sup} min\{ X \square A(p), A(q) \square$

 $\square \square = min\{\underset{ax=z_1z_2}{sup}min\{X(z_1),A(z_2)\},A(y)\}$

 $= \prod \min\{ \min\{ X(a), A(x)\}, A(y) \}$

 $= \square \min \{\min\{1, A(x)\}, A(y)\}\$

R. Sumitha et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274, Vol. 3, Issue 1, Jan-April 2018, pp.8-11

= $\square \min\{A(x), A(y)\}$ \square This shows that $A(axy) \square \min\{A(x), A(y)\} \square a, x, y \square X.$

4. References

- [1]. J.C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass.1969.
- [2]. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65(2007), no.1, 129-134.
- [3]. V.Mahalakshmi, S.Maharasi and S.Jayalakshmi. Bi-ideals of near subtraction semigroup,Indian Advances in Algebra 6(1)(2013)35-48.
- [4]. T.Manikandan,fuzzy bi-ideals of near-rings.J.Fuzzy Math.17(3)(2009) 659-671.
- [5]. Al.Narayanan and T.Manikandan,(∈,∈Vq) -fuzzy sub near-rings and (∈,∈Vq) - fuzzy idealsof near-rings, J.Appl.Math.and computing 18 (2005) 419-430.
- [6]. B.M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
- [7]. L.A.Zadeh ,Fuzzy sets, information and control 8 (1965) 338-353
- [8]. B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445- 447.

