
Sana Khan et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274,
Vol. 1, Issue 1, Jan-April 2016, pp.6-9

© 2016 IJIIR All Rights Reserved page- 6-

An Analysis and Survey of Equivalent

Mutant Problem

Sana khan

Department of Computer Science, Muhammad Ali Jinnah University, Islamabad, Pakistan

Abstract--Equivalent mutant problem is the most decisive problem in mutation testing and from decades

efforts are doing for its betterment. Equivalent mutants are artificial seeding defects in program to certify

mutation testing. Various techniques are anticipated that are efficient for finding equivalent mutant. In this

survey different approaches are deliberated to analyze the performance of different approaches.Different

techniques are satisfied by different parameters.

Keywords— Equivalent Mutant, Mutation Testing, Mutant, higher order Mutation.

1. Introduction

Testing is the crucial process to certify software

quality. The precision and quality of a software product

depends upon that how comprehensively it is tested. A

software testing technique which are most significant in

testing era known as Mutation testing which is proposed

by Hamlet and DeMillo[1]. It is known as fault-based

technique and has proved to be a valuable testing

technique. Mutation testing is based upon inserting

Faults Data or artificial defects in the original program

through mutant operator to identify that testing is

defining this fault or not. In mutation testing if at least

one test case is failed then the mutant is said to be

detected or killed and those which are not detected or

killed are known as alivemutant. [1] Outmoded

Syntactical Mutation Operators may be deletion of a

statement, Boolean expressions, arithmetic operators or

variables accumulation.

Figure.1 Mutation Process

Effectiveness of test suite defined by Mutation

testing that how much mutants are killed by test suite.

Mutation is unit based level technique. Mutation

operators are used to produce mutants in program.

The mutation process described in following steps as

shown in Figure.1 [11]

1.1 Equivalent Mutant Problem:

Alive mutants that cannot be killed are known as

Equivalent Mutants. Mutation testing can never be get

100% without distinguishing all equivalent mutants.

Finding equivalent mutants by hand is time consuming

and make mutation testing highly cost able that’s why

tester will not have full assurance about defects in

program and test data. The main advantage of equivalent

mutant problem over general equivalence problem is that

we do not examine equivalence of arbitrary pair of

programs because mutants are syntactically like original

program so we can develop techniques to find equivalent

mutants by using this fact [2].

This survey paper introduces equivalent mutant

problem. In sec. II background of equivalent mutant is

described. In sec.III the existing techniques algorithm

detail of equivalent mutants are described. In sec.IV the

evaluation criteria between techniques are presented. In

sec. V analysis is described. In sec.VI the conclusion is

presented.

2. Background

This section describesequivalent mutant problem, all

generated mutants should be killed as its a requirement

of testing criteria in mutation testing. Application of

mutation is slowed down by equivalent mutants. During

generation of test cases and executing phase, it kills the

mutants, the computational resources are surplus. For

undecidable nature of mutants manual analysis required.

Detection of mutants by hand is time consuming and its

difficult to improve efficiency of program. Recent

Sana Khan et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274,
Vol. 1, Issue 1, Jan-April 2016, pp.6-9

© 2016 IJIIR All Rights Reserved page- 7-

studies show that manually detection takes

approximately 15minutes to complete task and estimated

equivalent mutantsrange lies between 10% to 40% [3].

To rheostat this problem, there is need to develop

mechanism and algorithms which work efficiently.

Compiler optimization techniques and Analysis of

Equivalence Class Mutant Circuit Distributions are

oldest one, butthe existing techniques works and focuses

on the detection of equivalent mutant more precisely

including Data flow patterns, Mutant Evaluation by

Static Semantic Interpretation, through constraint

systems, code similarity, through feasible path problem

and many more which are working on the detection of

equivalent mutants. Some existing techniques are

described in sec.3.

3. Existing approaches

There are numerous existing techniques to detect

equivalent mutant problem which is deliberated here

with brief summary.

3.1 Bayesian Learning-Based Equivalent Detection

Technique:

This technique support the tester to find live mutants.

This technique used Brute-Force algorithm to estimate

stronger group of mutants. Its experimental description

consist of four steps to provide guidelines to help the

tasks of determining equivalent and non-equivalent

mutants.

1) Program Selection: In this 5-UNIX program used.

They are simple but we can find Bayesian Learning in

other program domains too.

2) Tool selection:Proteum was used to support mutation

Analysis. This tool help in unit level testing and

implement mutant in C programs.

3) Test set generation: 500 test cases was formed for 5-

UNIX programs.

 4) Results and data analysis: A test session was created

for programs using mutant operators. Mutant operator

were applied on 5-UNIX programs, 15 generate no

mutant and get no statistical information and then used

Proteum to enable and disable test cases. By adding

more test cases the variation was check in the number of

equivalent and non-equivalent mutant. Test cases

generate 19 subsets to collect information about live

mutants produced by specified operator to be equivalent

or non-equivalent then Bayes theorem was applied to

check the probability of mutant being equivalent.

Execute 19 test cases by Bayes theorem and after 20

probability of live mutant being equivalent increases. So

concluded that by increasing the execution of test cases

higher the assurance that live mutant is equivalent [4].

3.2 EqMutDetect – Tool for Equivalent Mutant

Detection in Embedded Systems:

EqMutDetect is a tool which is developed in Java and

used for detection and deletion of equivalent mutants.

Tool itself comprises of Generation of mutants,

Detection of mutants, Mutation test case generation.

Several implementation done by EqMutDetect. Tool

distinguish test cases that kill the mutants. If there was

no test case then this tool identified an equivalent

mutant. Mutation score enhanced by adding test cases in

test suite. This tool used in embedded system software

where data types are in loops, conditions and integers

and give effective output. [5]

3.3 Higher Order Mutation:

Three programs TCAS,TRIANGLE,TAXLEVELCALC

were selected for reducing equivalent mutant and

programs are executed in C language.2 programs were

downloaded from SIR and the third one is written by self

for producing equivalent mutants. MiLu tool is used to

generate mutants. MiLu generate first order mutant

(FOMS) of all these programs. Fixed sixe mutant

sampling were used for FOMS. By using C, compiler

executed FOMs manually to check that FOM is

equivalent or not. This was done by considering that

which test case kill the FOM. MiLu also generate second

order and random order mutants. From a pool of 400,

200 for second order and 200 for random mutants test

cases was selected. Same pattern repeated for second

order and random order to check that FOM is equivalent

or not. TCAS program test cases were downloaded from

software and for TRIANGLE and TAXLEVELCALC

done manually, where it’s difficult to kill mutants the

code were check manually that test cases are capable to

kill the mutants or mutant is equivalent. The result was

confirmed by different categories of mutants with the

help of pie charts and bar charts. HOM testing proves

that it truly capable of reducing the number of equivalent

mutants [6].

3.4 Code Similarity:

In code similarity mirrored mutants was introduced. In

which the mutants are similar to code fragments of the

program. The purpose is to improve the opposed effects

of the equivalent mutant problem. In this two mirrored

mutant m1 and m2 and similar code fragments cf1 and

cf2 was discussed and characterized as intra-method or

inter-method. It takes 3 test subject of

triangle.Information deduced by all three and drawn

result. Then rate calculation of kill mutants and live

mutants, empirical study and empirical evaluation was

done by using tool CCFinderX clone detection tool and

mujava mutation testing framework. By doing

Sana Khan et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274,
Vol. 1, Issue 1, Jan-April 2016, pp.6-9

© 2016 IJIIR All Rights Reserved page- 8-

experimental evaluation it is concluded that mirrored

mutants and equivalence has same behavior. The cost of

equivalents can be reduced in the existence of mirrored

mutants.50% of equivalent mutants can be classified

automatically. [3]

3.5 Constraint Systems:

In this technique the first algorithm explained to

eliminate equivalent mutant and then the algorithm

defined for mutation mark of test suite. The tool used in

this technique was MuJava for mutant computation and

MINION constraint solver for test cases. Algorithm

explained which take input as original program and give

output as constraint system. Three Algorithms

1)Algorithm Transform to CSP 2) Algorithm Eliminate

Equivalent Mutants 3) Algorithm Generate Test Cases

were described. It is defined through experimentation

that original program which was close to the mutant take

as consideration. Through this technique number of

equivalent mutant reduced and generate distinguishing

test cases. By adding more test cases in test suite it

showed that mutation score of new test suite increases

and assure that mutant is not equivalent. [7]

3.6 Data Flow Patterns:

Patterns are able to identify equivalent mutant.Mutants

are identified through specific paths in which mutant is

equivalent to original program. Nine patterns were used

in this technique and all are capable to identify

equivalent mutants. Use-Def, SameLine-UD,

DifferentBB-UD, Def-Def (DD), Use-Ret problematic

patterns were implemented for detection purpose.

Specific conditions between Variable definition and

Uses were introduced for each pattern path.This is the

latest technique and give tremendous result [8].

4. Evaluation criteria

4.1 Cost:

Mutation process is highly cost able process. Main

disadvantage of this testing is that Mutation testing is

based on creating mutants, executing mutants and

calculation of mutation score which make high cost [9].

Cost played highly role in Mutation. Mutant Schema are

used to reduce execution cost of and technique is known

as program schema technique [11].Higher Order

Mutation is expensive technique among all. Techniques

such that Mutant sampling, selective mutation, separate

compilation, schema based mutation are developed to

reduce the cost probability and enhance the detection

criteria of mutants. [1]

More common techniques are formed for cost aspects i.e.

Randomly Selected Mutation, Constrained Mutation and

Selective Mutation [4].

4.2 Performance:

Performance depend on the detection of mutants from

original programs.Performance measures,more the

execution of mutations higher the chance of being non-

equivalent. Data Flow Pattern contain best performance

among all. Higher Order Mutation proved that it is truly

capable of reducing mutants and enhance performance

criteria. Compiler optimization technique is lower in

performance parameter.

4.3 Tool Strength:

Different automated tools MuJava, Proteum,

EqMutDetect, and MilLuare used to increase the strength

of algorithms in mutation testing to find mutants. They

affect the performance parameter.

4.4 Time:

Time is required to identify that mutant is equivalent or

non-equivalent.Second order mutation testing reduced

the testing time as compared to higher order mutation.

Higher order testing take much time for execution

process. Empirical study shows that one single mutation

take 14 minutes and 28 seconds approximately [10]

4.5 Operator Efficiency:

An evaluation are held to check compatibility of

mutation operators to find equivalent mutants.

According to operators 140 manually classified

mutations were taken. Different Operators produces

different number of mutants (col.2) [10]

The result is summarized in Table.1
TABLE I. Mutation Operators

Mutation

operator
Number

of

mutants

Non-

equivalent

mutants

Equivalent

mutants

Replace

numerical

constant

78 34 (44%) 44 (56%)

Negate jump

condition
12 10 (83%) 2 (17%)

Replace

arithmetic

operator

7 3 (43%) 4 (57%)

Omit method

call
43 30 (70%) 13 (30%)

5. Analysis

In this survey, various techniques of equivalent mutant

have been discussed.

Based on survey, equivalent mutant techniques are

compared through different parameters like performance,

effectiveness, and efficiency and more.Different issues

like recognition of equivalent mutants are increasing the

computational cost as described in different techniques.

Newly techniques reduces the time complexity butdiffer

Sana Khan et al. International Journal of Institutional & Industrial Research ISSN: 2456-1274,
Vol. 1, Issue 1, Jan-April 2016, pp.6-9

© 2016 IJIIR All Rights Reserved page- 9-

in cost. Compiler optimization is old technique which

predict 10% of equivalent mutant. Randomly Selected

Mutation, Constrained Mutation, Selective Mutation

used to reduce equivalent mutant but they don’t give

perfect knowledge .There are still need to improve

algorithms. Then Bayesian learning and another learning

Algorithm Brute-Force MAP are used to calculate

percentages of equivalent mutant which give high

efficiency. Constraint system also used to detect mutants

but empirical studies showed that it is applicable to find

50% of mutants [4]. EqMutDetect tool give effective

result in embedded system to check the quality of test

suite which are used during testing. There are many tools

which are used for detection purpose and have different

performances according to algorithms like Mu Java,

Mothra, MILU, AOIS, Proteumand many more. HOM is

created by applying mutants more than once; number of

mutants is reduced by using this technique. Data flow

pattern is the latest technique which satisfies efficiency,

performance parameters. It is satisfactory technique and

literature study revealed that it helps to detect 70% of

equivalent mutants [8].

6. Conclusion

Mutation testing is based upon different steps in which

creation, execution and identification of mutants

involved.This is a costly technique but highly preferable

for detection purpose. When all equivalent mutants are

removed then mutation score is significantly enhanced.

Reduction of equivalent mutants shows a significant role

in the efficiency of test suites. In this paper different

approaches are highly preferable for detection purpose

but there is more need to enhance performance and

efficiency of algorithms using different tools. Emergent

techniques day by day increasing value of mutation

testing butin future all parameters should be standardize

in perfect technique.

References

[1]. Adamopoulos, Konstantinos, Mark Harman, and Robert M.
Hierons. "How to overcome the equivalent mutant problem

and achieve tailored selective mutation using co-

evolution." Genetic and Evolutionary Computation–
GECCO 2004.Springer Berlin Heidelberg, 2004.

[2]. Offutt, A. Jefferson, and Jie Pan. "Detecting equivalent

mutants and the feasible path problem." Computer
Assurance, 1996.COMPASS'96, Systems Integrity.Software

Safety.Process Security.Proceedings of the Eleventh Annual

Conference on.IEEE, 1996.
[3]. Kintis, Marinos, and NicosMalevris. "Identifying more

equivalent mutants via code similarity." Software

Engineering Conference (APSEC, 2013 20th Asia-
Pacific.Vol. 1.IEEE, 2013.

[4]. Maldonado, Jose Carlos, Marcio Eduardo Delamaro, And

Roseli Aparecida Francelin Romero. "Bayesian-Learning
Based Guidelines To Determine Equivalent

Mutants." Machine Learning Applications in Software

Engineering 16.6 (2005): 150.
[5]. Nica, Simona, and Franz Wotawa. "EqMutDetect—a tool

for equivalent mutant detection in embedded

systems." Intelligent Solutions in Embedded Systems
(WISES), 2012 Proceedings of the Tenth Workshop on.

IEEE, 2012.

[6]. Akinde, AderonkeOlusola. "Using higher order mutation for
reducing equivalent mutants in mutationtesting." Asian

Journal of Computer Science & Information Technology 2.3

(2013)
[7]. Nica, Simona, MihaiNica, and Franz Wotawa. "Detecting

equivalent mutants by means of constraint systems." VALID

2011, the Third International Conference on Advances in
System Testing and Validation Lifecycle. 2011.

[8]. Kintis, Marinos, and NicosMalevris. "Using Data Flow

Patterns for Equivalent Mutant Detection." Software
Testing, Verification and Validation Workshops (ICSTW),

2014 IEEE Seventh International Conference on.IEEE,

2014.
[9]. Mateo, Pedro Reales, and Macario Polo Usaola. "Mutant

execution cost reduction: Through music (mutant schema

improved with extra code)."Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International

Conference on.IEEE, 2012.

[10]. [10] Schuler, David, and Andreas Zeller. "Covering and

uncovering equivalent mutants." Software Testing,

Verification and Reliability 23.5 (2013): 353-374.

